Argon Annealing and Oxygen Purity Affect Structural and Critical Parameters of YBCO Copper Oxide System

  • Atif Mossad Ali
  • A. SedkyEmail author
  • H. Algarni
  • M. A. Sayed


We report here the effects of argon annealing on the structural and critical parameters of oxygenated copper oxide system with different oxygen purities (Hp 99.99% and Lp 93%). It is found that the structure of the samples maintains orthorhombic single phase independent of both oxygen purity and annealing. The mean field temperature Tcmf is increased by annealing from 92 to 94 K for Lp sample, but it is decreased from 93 to 90 K for Hp sample. Similar behavior is obtained for crossover temperatures To. Further, the coherence length and interlayer coupling are decreased by annealing for both samples, and their values are higher for Lp samples than those for Hp samples. The excess conductivity analysis reveals two different exponents corresponding to crossover temperature for each plot: The first exponent is obtained in the normal field region at a temperature range of ln ε (0 ≥ ln ε ≥  − 2), and their values are 1.50, 1.53, 1.62 and 1.47 for both samples, in which the order parameter dimensionality (OPD) is one dimension, while the second exponent is obtained in the mean field region at a temperature range of ln ε (− 2 ≥ ln ε ≥  − 4), and their values are 0.39, 0.59, 0.56 and 0.41 for both samples, in which the OPD is 3D. Although the critical temperatures are decreased by annealing for both samples, the critical fields and critical currents are increased by annealing for both samples and their values are higher for Hp sample than those for Lp sample. Our results are discussed in terms of oxygen vacancies and concentration of carriers which are produced by annealing and oxygen purity for the considered samples.


Argon annealing Oxygen purity Order parameter Critical parameters and copper oxide 



The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P. 1/121/40.


  1. 1.
    A.K. Ghosh, S.K. Bandyopadhyay, P. Barat, P. Sen, A.N. Basu, Phys C 255, 319 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    A.K. Ghosh, A.N. Basu, Supercond. Sci. Technol. 13, 343 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    N.A. Khan, N. Hassan, S. Nawaz, B. Shabbir, S. Khan, A.A. Rizvi, J. Appl. Phys. 107, 083910 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    A.K. Ghosh, S.K. Bandyopadhyay, A.N. Basu, Mod. Phys. Lett. B 11, 1013 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    D.S. Fisher, M.P.A. Fisher, D.A. Huse, Phys. Rev. B 43, 130 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    F. Vidal, J.A. Veira, J. Maja, J.J. Ponte, F.G. Alvarado, E. Mordan, J. Amador, C. Cascales, Phys C 156, 807 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    D.K. Aswal, A. Singh, S. Sen, M. Kaur, C.S. Viswandham, G.L. Goswami, S.K. Gupta, J. Phys. Chem. Solids 63, 1797 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    M. Sahoo, D. Behera, J. Phys. Chem. Solids 74, 950 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    A. Esmaeili, H. Sedghi, J. Alloys Compd. 537, 29 (2012)CrossRefGoogle Scholar
  10. 10.
    E.M.M. Ibrahim, S.A. Saleh, Supercond. Sci. Technol. 20, 672 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    M. Mumtaz, S.M. Hasnian, A.A. Khurram, N.A. Khan, J. Appl. Phys. 109, 023906 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    A. Esmaeili, H. Sedghi, M. Amniat-Talab, M. Talebian, Eur. Phys. J. B 79, 443 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    A. Sedky, J. Low Temp. Phys. 148, 53 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    A. Sedky, P. Mohamed, Chin. Phys. B 22(11), 117401 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    J.D. Jorgensen, D.G. Hinks, P.G. Radaeilli, S. Pei, P. Light-foot, B. Dabrowski, C.U. Segre, B.A. Hunter, Phys C 185, 184–189 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    F. Yakhou, J.Y. Henry, P. Burlet, V.P. Plakhty, M. Vlasov, S. Moshkin, Phys C 333, 146 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    J.L. Tallon, C. Bernhard, H. Shaked, R.L. Hitterman, J.D. Jorgensen, Phys. Rev. B 51, 12911 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    P. Schleger, R.A. Hadfield, H. Casalta, N.H. Anderson, H.F. Poulsen, M. Von Zimmermann, J.R. Schneider, R. Liang, P. Dosanjh, W.N. Hardy, Phys. Rev. Lett. 74, 1446 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    A. Gupta, A. Sedky, A.V. Narlikar, D.P. Singh, J. Mater. Sci. 37, 1557 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    A. Sedky, B. Abu-Ziad, Phys C 470, 659 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    B.D. Weaver, E.M. Jackson, G.P. Summers, E.A. Jackson, Phys. Rev. B 46, 1134 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    A. Sedky, Phys B 410, 233 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977)ADSCrossRefGoogle Scholar
  24. 24.
    R.G. Buckley, J.L. Tallon, D.M. Pooke, M.R. Presland, Phys C 165, 391 (1990)ADSCrossRefGoogle Scholar
  25. 25.
    A. Das, R. Suryanarayanan, J. Phys. 15, 623 (1995)Google Scholar
  26. 26.
    L. Reggiani, R. Vaglio, A.A. Varlamo, Phys. Rev. B 44, 9541 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    W.E. Lawrence, S. Doniach, in Proceedings of 12th Conference on Low-Temperature Physics (Tokyo, 1970), p. 361.Google Scholar
  28. 28.
    A. Sedky, A. Salah, S.A. Amin, Asian J. Phys. Sci. Chem. 3(2), 1–15 (2017)Google Scholar
  29. 29.
    F. Ben Azzouz, M. Zouaoui, M. Annabi, M. Ben Salem, Phys. Stat. Sol. (c) 3(9), 3048 (2006)CrossRefGoogle Scholar
  30. 30.
    C.J. Lobb, Phys. Rev. B 36, 3930 (1987)ADSCrossRefGoogle Scholar
  31. 31.
    W. Anderson, Z. Zou, Phys. Rev. Lett. 60, 132 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    L.G. Aslamazov, A.I. Larkin, Phys. Lett. A 26, 238 (1968)ADSCrossRefGoogle Scholar
  33. 33.
    W.E. Lawrence, S. Doniach, in Proceedings of 12th International Conference on Low Temperature Physics Kyoto, ed. by E. Kanada (Keigaku, Tokyo, 1971), p. 361Google Scholar
  34. 34.
    A.K. Gosh, S.K. Bandyopadhyay, A.N. Basu, J. Appl. Phys. 86, 3247 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    A.K. Ghosh, S.K. Bandyopadhyay, P. Barat, P. Sen, A.N. Basu, Phys C 264, 255 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    A.I. Abou-Aly, R. Awad, M. Kamal, M. Anas, J. Low Temp. Phys. 163, 184 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    A. Sedky, J. Phys. Chem. Solids 70, 483 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    P.C. Poole, A.H. Farach, J.R. Creswick, R. Prozorov, Superconductivity, 2nd edn. (Academic Press, San Diego, 2007)Google Scholar
  39. 39.
    A.I. Abou Aly, I.H. Ibrahim, R. Awad, A. El-Harizy, A. Khalaf, J. Supercond. Nov. Magn. 23(7), 1325 (2010)CrossRefGoogle Scholar
  40. 40.
    A.I. Abou-Aly, R. Awad, I.H. Ibrahim, W. Abdeen, Solid State Commun. 140, 281 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    A. Sedky, J. Magn. Mag. Mater. 277, 293 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    Y. Petrovie, R. Fasano, M. Lortz, M. Dcrous, M. Potel, R. Cheriel, Phys C 460–462, 702 (2007)CrossRefGoogle Scholar
  43. 43.
    J. Jaroszynski, S.C. Riggs, F. Hunte, A. Gurevich, D.C. Larbalestier, G.S. Boebinger, F.F. Balakirev, A. Migliori, Z.A. Ren, W. Lu, J. Yang, X.L. Shen, X.L. Dong, Z.X. Zhao, R. Jin, A.S. Sefat, M.A. McGuire, B.C. Sales, D.K. Christen, D. Mandrus, Phys. Rev. B 78, 064511 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    M.O. Mun, S.I. Lee, W.C. Lee, Phys. Rev. B 56, 14668 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    A. Sedky, E. Nazarova, K. Nenkov, K. Buchkov, J. Supercond. Nov. Magn. 30, 2751 (2017)CrossRefGoogle Scholar
  46. 46.
    I. Pallecchi, C. Fanciulli, M. Tropeano, A. Palenzona, M. Ferretti, A. Malagoli, A. Martinelli, I. Sheikin, M. Putti, C. Ferdeghini, Phys. Rev. B 79, 104515 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    A.L. Solov’ev, V.M. Dmitriev, Low Temp. Phys. 35, 169 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    F. Vidal, J.A. Veira, J. Maza, F. Garcia-Alvarado, E. Moran, M.A. Alario, J. Phys. C 21, L9 (1988)CrossRefGoogle Scholar
  49. 49.
    J.A. Veira, J.F. Maza, J. Vida, Phys. Lett. A 131, 310 (1988)ADSCrossRefGoogle Scholar
  50. 50.
    A. Sedky, M.I. Youssif, Braz. J. Phys. 46, 198 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    S.R. Ghorbani, M. Homaei, Mod. Phys. Lett. B 25(23), 1915 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    K. Nawazish Ali, H. Najmul, N. Sana, S. Babar, K. Sajid, A.A. Rizvi, J. Appl. Phys. 107, 083910 (2010)CrossRefGoogle Scholar
  53. 53.
    A. Bianconi, A. Valletta, A. Perali, N.L. Saini, Phys C 296, 269 (1998)ADSCrossRefGoogle Scholar
  54. 54.
    A.K. Ghosh, A.N. Basu, Supercond. Sci. Technol. 11, 852 (1998)ADSCrossRefGoogle Scholar
  55. 55.
    A.V. Narlikar, A. Gupta, S.B. Samanta, C. Chen, Y. Hu, P. Wander, B.M. Wanklyn, J.W. Hodby, Philos. Mag. B 79, 717 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Atif Mossad Ali
    • 1
    • 2
  • A. Sedky
    • 2
    Email author
  • H. Algarni
    • 1
  • M. A. Sayed
    • 1
  1. 1.Physics Department, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Physics Department, Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations