Advertisement

Journal of Low Temperature Physics

, Volume 196, Issue 1–2, pp 28–34 | Cite as

Peculiarities of Spherically Symmetric Counterflow

  • E. VargaEmail author
Article
  • 68 Downloads

Abstract

Thermal counterflow in superfluid \(^4\)He (He II) was studied numerically using the vortex filament model in a spherically symmetric geometry (as resulting from a point heat source). It is found that for the range of temperatures and velocities studied, turbulent tangle of the quantised vortices develops only for sufficiently low temperatures, hinting at the existence of a critical temperature, and only for velocities bounded from above (and presumably from below). A velocity–temperature phase diagram is presented. A simple physical model is proposed that qualitatively explains both observations.

Keywords

Superfluid helium Quantum turbulence Thermal counterflow 

Notes

Acknowledgements

I would like to thank L. Skrbek for many useful discussions.

References

  1. 1.
    D.R. Tilley, J. Tilley, Superfluidity and Superconductivity, 3rd edn. (Institute of Physics Publishing, Bristol and Philadelphia, 1990)zbMATHGoogle Scholar
  2. 2.
    C.F. Barenghi, L. Skrbek, K.R. Sreenivasan, Proc. Natl. Acad. Sci. 111, 4647 (2014)CrossRefGoogle Scholar
  3. 3.
    W.F. Vinen, Proc. R. Soc. A Math. Phys. Eng. Sci. 243(1234), 400 (1958)CrossRefGoogle Scholar
  4. 4.
    E. Varga, L. Skrbek, Phys. Rev. B 97, 064507 (2018)CrossRefGoogle Scholar
  5. 5.
    S. Babuin, E. Varga, W.F. Vinen, L. Skrbek, Phys. Rev. B 92(18), 184503 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Babuin, M. Stammeier, E. Varga, W.F. Vinen, L. Skrbek, Phys. Rev. B 86(13), 134515 (2012)CrossRefGoogle Scholar
  7. 7.
    H. Adachi, S. Fujiyama, M. Tsubota, Phys. Rev. B 81(10), 104511 (2010)CrossRefGoogle Scholar
  8. 8.
    R. Hanninen, A. Baggaley, Proc. Natl. Acad. Sci. 111, 4667 (2014)CrossRefGoogle Scholar
  9. 9.
    K.W. Schwarz, Phys. Rev. B 38(4), 2398 (1988)CrossRefGoogle Scholar
  10. 10.
    R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991)Google Scholar
  11. 11.
    A. Finne, T. Araki, R. Blaauwgeers, V. Eltsov, N. Kopnin, M. Krusius, L. Skrbek, M. Tsubota, G. Volovik, Nature 424(6952), 1022 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic

Personalised recommendations