Advertisement

Journal of Low Temperature Physics

, Volume 196, Issue 1–2, pp 21–27 | Cite as

Spin–Spin and Spin–Phonon Interaction as a Nature of Microwave Absorption in He II

  • K. A. ChishkoEmail author
  • A. S. Rybalko
Article
  • 21 Downloads

Abstract

Experimentally observed with dielectric disk resonator technique, microwave absorption–amplification in liquid He II below \(\lambda \)-point has been interpreted theoretically as a phenomenon in electrically active dielectric medium with low-energy excitations which exist near the ground state of the four-electron He–He interatomic bond due to spin–spin and spin–phonon coupling. The experimentally registered microwave absorption line is \(f_0=180.3\,\hbox {GHz}\) at \(T=1.4\,\hbox {K}\) and \(f_0=150.0\,\hbox {GHz}\) at \(T=2.1\hbox {K}\) which strongly corresponds to the values of roton gap known from neutron diffractometry. Our theoretical estimation gives only an upper limit \(>250\,\hbox {GHz}\) for resonant response of the system. We interpret the dielectric \(^4\hbox {He}\) superfluid as a working substance for low-temperature MASER and clarify the atomic mechanism of microwave absorption–amplification in the condensed helium phases.

Keywords

Superfluid helium Spin–phonon interaction Microwave resonant absorption Low-energy excitations in He II 

Notes

References

  1. 1.
    A. Rybalko, S. Rubets, E. Rudavskii et al., Phys. Rev. B 76, 140503 (2007)CrossRefGoogle Scholar
  2. 2.
    A. Rybalko, S. Rubets, E. Rudavskii et al., J. Low Temp. Phys. 148, 527 (2007)CrossRefGoogle Scholar
  3. 3.
    A.S. Rybalko, S. Rubets, E. Rudavskii et al., Low Temp. Phys. 34, 254 (2008)CrossRefGoogle Scholar
  4. 4.
    A. Rybalko, S. Rubets, E. Rudavskii et al., Low Temp. Phys. 35, 837 (2009)CrossRefGoogle Scholar
  5. 5.
    A. Rybalko, S. Rubets, E. Rudavskii et al., J. Low Temp. Phys. 158, 244 (2010)CrossRefGoogle Scholar
  6. 6.
    A.S. Rybalko, S. Rubets, E. Rudavskii, et.al., arXiv: 0811.2114 [cond-mat.]
  7. 7.
    D.G. Henshaw, A.D.B. Woods, Phys. Rev. 121, 1266 (1961)CrossRefGoogle Scholar
  8. 8.
    G. Zigmont, F. Mezei, M.T.F. Telling, Phys. B 388, 43 (2007)CrossRefGoogle Scholar
  9. 9.
    R.J. Donnelly, P.H. Roberts, J. Low Temp. Phys. 27, 687 (1977)CrossRefGoogle Scholar
  10. 10.
    R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27, 1217 (1998).  https://doi.org/10.1063/1.556028 CrossRefGoogle Scholar
  11. 11.
    W. Gordy, R.L. Cook, Microwave Molecular Spectra (Wiley-Interscience, New York, 1984)Google Scholar
  12. 12.
    K.A. Chishko, Low Temp. Phys. 44, 1097 (2018).  https://doi.org/10.1063/1.5055858 CrossRefGoogle Scholar
  13. 13.
    H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Plenum, New York, 1977)CrossRefzbMATHGoogle Scholar
  14. 14.
    K.A. Chishko, Low Temp. Phys. 44, 114 (2018)CrossRefGoogle Scholar
  15. 15.
    T.N. Antsygina, V.A. Slyusarev, Teor. Math. Fiz. 77, 234 (1988)Google Scholar
  16. 16.
    T.N. Antsygina, M.I. Poltavskaya, K.A. Chishko, Fiz. Tverd. Tela 44, 1215 (2002)Google Scholar
  17. 17.
    T.N. Antsygina, M.I. Poltavskaya, K.A. Chishko, Low Temp. Phys. 29, 720 (2003)CrossRefGoogle Scholar
  18. 18.
    L.D. Landau, J. Phys. USSR 5, 71 (1941). [Sov. Phys. JETP, 11, 592 (1941)]Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.B. Verkin Institute for Low Temperature Physics and EngineeringKharkivUkraine

Personalised recommendations