Journal of Low Temperature Physics

, Volume 195, Issue 5–6, pp 429–436 | Cite as

Gray and Dark Soliton Behavior and Population Under a Symmetric and Asymmetric Potential Trap

  • Jameel Hussain
  • Javed AkramEmail author
  • Farhan Saif


We numerically study the impact of Gaussian barrier height and width on gray solitons population in a symmetric and asymmetric potential trap. The gray solitons are created in a double-well potential by density engineering method. Two identical Bose–Einstein condensate fragments are confined and made to collide by switching off the Gaussian barrier in a double-well potential. We find that the gray solitons population can be manipulated by Gaussian barrier height and width. We also study the gray solitons population dependence on the coupling strength. Moreover, we also study the impact of an asymmetry present in the double-well potential. We observe that such an asymmetry always swings the point of collision of the gray solitons. Later, a stationary dark soliton is created by phase imprinting method, and we observe that the initial asymmetry in the double-well potential trap sets the dark soliton into oscillation.


Bose–Einstein condensates Gray and dark solitons Symmetry and asymmetry potentials 



Jameel Hussain gratefully acknowledges support from the COMSATS University Islamabad for providing him a workspace.


  1. 1.
    J.S. Russell, in Report on Waves: Made to the Meetings of the British Association in 1842–43 (1845)Google Scholar
  2. 2.
    R.I. Woodward, E.J.R. Kelleher, Phys. Rev. E 93, 032221 (2016)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Chabchoub, O. Kimmoun, H. Branger, C. Kharif, N. Hoffmann, M. Onorato, N. Akhmediev, Phys. Rev. E 89, 011002 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    K.E. Strecker, G.B. Partridge, A.G. Truscott, R.G. Hulet, Nature (London) 417, 150 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L.D. Carr, Y. Castin, C. Salomon, Science 296, 1290 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    S.L. Cornish, S.T. Thompson, C.E. Wieman, Phys. Rev. Lett. 96, 170401 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G.V. Shlyapnikov, M. Lewenstein, Phys. Rev. Lett. 83, 5198 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    J. Denschlag, J.E. Simsarian, D.L. Feder, C.W. Clark, L.A. Collins, J. Cubizolles, L. Deng, E.W. Hagley, K. Helmerson, W.P. Reinhardt, S.L. Rolston, B.I. Schneider, W.D. Phillips, Science 287, 97 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    B.P. Anderson, P.C. Haljan, C.A. Regal, D.L. Feder, L.A. Collins, C.W. Clark, E.A. Cornell, Phys. Rev. Lett. 86, 2926 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    J. Akram, A. Pelster, Laser Phys. 26, 065501 (2016a)ADSCrossRefGoogle Scholar
  11. 11.
    J. Akram, A. Pelster, Phys. Rev. A 93, 033610 (2016b)ADSCrossRefGoogle Scholar
  12. 12.
    J. Akram, Laser Phys. Lett. 15, 025501 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    S. Yomosa, J. Phys. Soc. Jpn. 56, 506 (1987)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A.H.D. Constantin, Z. fur Naturforschung A 64, 1 (2009)Google Scholar
  15. 15.
    W. Hereman, Shallow Water Waves and Solitary Waves, in Mathematics of Complexity and Dynamical Systems, ed. by R.A. Meyers (Springer, New York, 2011), pp. 1520–1532Google Scholar
  16. 16.
    O. Darrigol, Worlds of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl (Oxford University Press, Oxford, 2005)zbMATHGoogle Scholar
  17. 17.
    N.J. Zabusky, M.D. Kruskal, Phys. Rev. Lett. 15, 240 (1965)ADSCrossRefGoogle Scholar
  18. 18.
    N.J. Zabusky, Phys. Rev. 168, 124 (1968)ADSCrossRefGoogle Scholar
  19. 19.
    R.W. Clark, Einstein: The Life and Times, Discus Books (HarperCollins, 1984)Google Scholar
  20. 20.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    D.J. Frantzeskakis, J. Phys. A Math. Theor. 43, 213001 (2010a)ADSCrossRefGoogle Scholar
  24. 24.
    L. Khaykovich, Science 296, 1290 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, M.K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    D. Ananikian, T. Bergeman, Phys. Rev. A 73, 013604 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    R. Ichihara, I. Danshita, T. Nikuni, Phys. Rev. A 78, 063604 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Ł. Dobrek, M. Gajda, M. Lewenstein, K. Sengstock, G. Birkl, W. Ertmer, Phys. Rev. A 60, R3381 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    E.P. Gross, J. Math. Phys. 4, 195 (1963)ADSCrossRefGoogle Scholar
  30. 30.
    L.P. Pitaevsk, Sov. Phys. JETP-USSR 13, 7001053 (1961)Google Scholar
  31. 31.
    J. Akram, A. Pelster, Phys. Rev. A 93, 023606 (2016c)ADSCrossRefGoogle Scholar
  32. 32.
    W. Bao, D. Jaksch, P.A. Markowich, J. Comput. Phys. 187, 318 (2003)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    D. Vudragović, I. Vidanović, A. Balaž, P. Muruganandam, S.K. Adhikari, Comput. Phys. Commun. 183, 2021 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    R .K. Kumar, L .E. Young-S, D. Vudragović, A. Balaž, P. Muruganandam, S. Adhikari, Comput. Phys. Commun. 195, 117 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    V. Lončar, A. Balaž, A. Bogojević, S. Škrbić, P. Muruganandam, S.K. Adhikari, Comput. Phys. Commun. 200, 406 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    B. Satarić, V. Slavnić, A. Belić, A. Balaž, P. Muruganandam, S.K. Adhikari, Comput. Phys. Commun. 200, 411 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    D.J. Frantzeskakis, J. Phys. A Math. Theor. 43, 213001 (2010b)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ElectronicsQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of PhysicsCOMSATS University IslamabadIslamabadPakistan

Personalised recommendations