Journal of Low Temperature Physics

, Volume 196, Issue 1–2, pp 301–307 | Cite as

Study of the Nonlinear Dynamics of Micro-resonators Based on a Sn-Whisker in Vacuum and at mK Temperatures

  • Marcel ČlovečkoEmail author
  • Peter Skyba
  • František Vavrek


The dynamics of mechanical resonators can be studied by two complementary methods allowing the measurements in two different domains: (i) in the frequency domain—by the frequency sweeps using cw-excitation and (ii) in the time domain—by the pulse techniques, when the free decay oscillations are investigated. We show that the dynamics of the Sn-whisker-based resonator studied by both methods can be described by a phenomenological Duffing theory. Furthermore, we present the results of a theoretical analysis based on this theory provided in frequency and in time domains, and we show that these results correspond to those acquired experimentally.


Micro-resonators Tin whiskers Pulse-demodulation technique Duffing resonator 



We would like to thankfully acknowledge the support by grants APVV 16-0372, VEGA 2/0086/18, European Microkelvin Platform (H2020 project 824109) and EU project ERDF-ITMS 26220120047 (Extrem-II). The financial support provided by the US Steel Košice s.r.o. is also gratefully recognised and highly appreciated.


  1. 1.
    K.L. Ekinci, M.L. Roukes, Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005)CrossRefGoogle Scholar
  2. 2.
    J. Chaste, A. Eichle, J. Moser, G. Ceballos, R. Rurali, A. Bachtold, A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7, 301 (2012)CrossRefGoogle Scholar
  3. 3.
    C. Lam, A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry, in Proceedings IEEE Ultrasonics Symposium (2008), pp. 694–704Google Scholar
  4. 4.
    S.-S. Li, Y.-W. Lin, Z. Ren, C.-C. Nguyen, An MSI micromechanical differential disk-array filter, in Solid-State Sensors, Actuators and Microsystems Conference 2007 (2007), pp. 307–311Google Scholar
  5. 5.
    L.G. Remus, M.P. Blencowe, Y. Tanaka, Damping and decoherence of a nanomechanical resonator due to a few two-level systems. Phys. Rev. B 80, 174103 (2009)CrossRefGoogle Scholar
  6. 6.
    O. Maillet, F. Vavrek, A.D. Fefferman, O. Bourgeois, E. Collin, Classical decoherence in a nanomechanical resonator. New J. Phys. 18(7), 073022 (2016)CrossRefGoogle Scholar
  7. 7.
    K.G. Compton, A. Mendizza, S.M. Arnold, Filamentary growths on metal surfaces whiskers. Corrosion 7, 327 (1951)CrossRefGoogle Scholar
  8. 8.
    R.M. Fisher, L.S. Darken, K.G. Carroll, Accelerated growth of tin whiskers. Acta Metal. 2, 368 (1954)CrossRefGoogle Scholar
  9. 9.
    G.T. Gaylon, A history of a Tin Whisker theory: 1946 to 2004, iNEMI. Freely available on Accessed 20 Mar 2018
  10. 10.
    Y. Sun, E.N. Hoffman, P.-S. Lam, X. Li, Evaluation of local strain evolution from metallic whisker formation. Scr. Mater. 65, 388 (2011)CrossRefGoogle Scholar
  11. 11.
    W.J. Choi, T.Y. Lee, K.N. Tu, N. Tamura, R.S. Celestre, A.A. MacDowell, Y.Y. Bong, L. Nguyen, Tin whiskers studied by synchrotron radiation scanning X-ray micro-diffraction. Acta Mater. 51, 6253 (2003)CrossRefGoogle Scholar
  12. 12.
    S.S. Singh, R. Sarkar, H.-X. Xie, C. Mayer, J. Rajagopalan, N. Chawla, Tensile behavior of single-crystal tin whiskers. J. Electron. Mater. 43(4), 978 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Človečko, E. Gažo, S. Longauer, E. Múdra, P. Skyba, F. Vavrek, M. Vojtko, Vacuum measurements of a novel micro-resonator based on tin whiskers performed at mK temperatures. J. Low Temp. Phys. 175, 449 (2014)CrossRefGoogle Scholar
  14. 14.
    P. Skyba, Notes on measurement methods of mechanical resonators used in low temperature physics. J. Low Temp. Phys. 160, 219 (2010)CrossRefGoogle Scholar
  15. 15.
    M. Človečko, M. Grajcar, M. Kupka, P. Neilinger, M. Rehák, P. Skyba, F. Vavrek, High Q value quartz tuning fork in vacuum as a potential thermometer in Millikelvin temperature range. J. Low Temp. Phys. 187, 573 (2017)CrossRefGoogle Scholar
  16. 16.
    F. Tajaddodianfar, M.R.H. Yazdi, H.N. Pishkenari, Nonlinear dynamics of MEMS/NEMS resonators: analytical solution by the homotopy analysis method. Microsyst. Technol. 23, 1913 (2017). CrossRefGoogle Scholar
  17. 17.
    D.W. Jordan, P. Smith, Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers, 4th edn. (Oxford University Press, Oxford, 2007), pp. 223–233. (ISBN 978-0-19-920824-1)zbMATHGoogle Scholar
  18. 18.
    K. Levenberg, A method for the solution of certain problems in least squares. Q. Appl. Math. 2, 164–168 (1944)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    P.R. Gill, W. Murray, M.H. Wright, The Levenberg–Marquardt method, 4.7.3, in Practical Optimization, ed. by P.E. Gill (Academic Press, London, 1981), pp. 136–137Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre of Low Temperature Physics, Institute of Experimental PhysicsSAS and P. J. Šafárik University KošiceKošiceSlovakia

Personalised recommendations