Advertisement

Journal of Low Temperature Physics

, Volume 196, Issue 1–2, pp 226–233 | Cite as

Superconductivity in Model Cuprate as an \(S = 1\) Pseudomagnon Condensation

  • E. V. VasinovichEmail author
  • A. S. Moskvin
  • Yu. D. Panov
Article
  • 11 Downloads

Abstract

We make use of the \(S = 1\) pseudospin formalism to describe the charge degree of freedom in a model high-\(T_c\) cuprate with the on-site Hilbert space reduced to the three effective valence centers, nominally \(\hbox {Cu}^{1+,\,2+,\,3+}\). Starting with a parent cuprate as an analog of the quantum paramagnet ground state and using the Schwinger boson technique, we found the pseudospin spectrum and conditions for the pseudomagnon condensation with phase transition to a superconducting state.

Keywords

Phase transition Condensation HTSC Cuprates Spin-1 Quantum paramagnet 

Notes

Acknowledgements

The research was supported by the Government of the Russian Federation, Program 02.A03.21.0006, by the Ministry of Education and Science of the Russian Federation, Projects Nos. 2277 and 5719, and by the Competitiveness Enhancement Program—CEP 3.1.1.2-18.

References

  1. 1.
    C.J. Hamer, Phys. Rev. B 81, 214424 (2010)CrossRefGoogle Scholar
  2. 2.
    A.V. Sizanov, A.V. Syromyatnikov, Phys. Rev. B 84, 054445 (2011)CrossRefGoogle Scholar
  3. 3.
    M. Guimarães, B.V. Costa, A.S.T. Pires, A. Souza, J. Magn. Magn. Mater. 32, 103 (2013)CrossRefGoogle Scholar
  4. 4.
    G.M.A. Sousa, A.S.T. Pires, J. Magn. Magn. Mater. 354, 376 (2014)CrossRefGoogle Scholar
  5. 5.
    A.R. Moura, J. Magn. Magn. Mater. 369, 62 (2014)CrossRefGoogle Scholar
  6. 6.
    J.L. Manson, A.G. Baldwin, B.L. Scott, J. Bendix, R.E. Del Sesto, P.A. Goddard, Y. Kohama, H.E. Tran, S. Ghannadzadeh, J. Singleton, T. Lancaster, J.S. Moller, S.J. Blundell, F.L. Pratt, V.S. Zapf, J. Kang, C. Lee, M.-H. Whangbo, C. Baines, Inorg. Chem. 51, 7520 (2012)CrossRefGoogle Scholar
  7. 7.
    K. Wierschem, P. Sengupta, Mod. Phys. Lett. B 28, 1430017 (2014)CrossRefGoogle Scholar
  8. 8.
    A. Paduan-Filho, X. Gratens, N.F. Oliveira, Phys. Rev. B 69, 020405 (2004)CrossRefGoogle Scholar
  9. 9.
    S. Diehl, M. Baranov, A.J. Daley, P. Zoller, Phys. Rev. Lett. 104, 165301 (2010)CrossRefGoogle Scholar
  10. 10.
    A.S. Moskvin, Low Temp. Phys. 33, 234 (2007)CrossRefGoogle Scholar
  11. 11.
    A.S. Moskvin, Phys. Rev. B 84, 075116 (2011)CrossRefGoogle Scholar
  12. 12.
    A.S. Moskvin, J. Phys. Condens. Matter 25, 085601 (2013)CrossRefGoogle Scholar
  13. 13.
    A.S. Moskvin, J. Exp. Theor. Phys. 121, 477 (2015)CrossRefGoogle Scholar
  14. 14.
    E.V. Vasinovich, A.S. Moskvin, Y.D. Panov, Phys. Solid State 60, 2145 (2018)CrossRefGoogle Scholar
  15. 15.
    G. Misguich, C. Lhuillier, in Frustrated Spin Systems, ed. by H.T. Diep (World Scientific, Singapore, 2004), pp. 229–307Google Scholar
  16. 16.
    E. Dagotto, A. Moreo, Phys. Rev. Lett. 63, 2148 (1989)CrossRefGoogle Scholar
  17. 17.
    M.E. Zhitomirsky, K. Ueda, Phys. Rev. B 54, 9007 (1996)CrossRefGoogle Scholar
  18. 18.
    J. Richter, J. Schulenburg, Eur. Phys. J. B 73, 117 (2010)CrossRefGoogle Scholar
  19. 19.
    R.R.P. Singh, W. Zheng, J. Oitmaa, O.P. Sushkov, C.J. Hamer, Phys. Rev. Lett. 91, 017201 (2003)CrossRefGoogle Scholar
  20. 20.
    O.P. Sushkov, J. Oitmaa, Z. Weihong, Phys. Rev. B 63, 104420 (2001)CrossRefGoogle Scholar
  21. 21.
    N. Read, S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)CrossRefGoogle Scholar
  22. 22.
    J. Reuther, P. Wölfle, Phys. Rev. B 81, 144410 (2010)CrossRefGoogle Scholar
  23. 23.
    L. Siurakshina, D. Ihle, R. Hayn, Phys. Rev. B 64, 104406 (2001)CrossRefGoogle Scholar
  24. 24.
    V. Murg, F. Verstraete, J.I. Cirac, Phys. Rev. B 79, 195119 (2009)CrossRefGoogle Scholar
  25. 25.
    D.P. Arovas, A. Auerbach, Phys. Rev. B 38, 316 (1988)CrossRefGoogle Scholar
  26. 26.
    H.T. Wang, Y. Wang, Phys. Rev. B 71, 104429 (2005)CrossRefGoogle Scholar
  27. 27.
    Z. Zhang, Phys. Rev. B 87, 174405 (2013)CrossRefGoogle Scholar
  28. 28.
    A.S.T. Pires, Physica A 437, 198 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    A.S.T. Pires, Physica A 459, 100 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    T.H. Pimenta, A.S.T. Pires, J. Magn. Magn. Mater. 465, 58 (2018)CrossRefGoogle Scholar
  31. 31.
    N. Papanicolaou, Nucl. Phys. B 305, 367 (1988)MathSciNetCrossRefGoogle Scholar
  32. 32.
    A. Imambekov, M. Lukin, E. Demler, Phys. Rev. A 68, 063602 (2003)CrossRefGoogle Scholar
  33. 33.
    A. Läuchli, G. Schmid, S. Trebst, Phys. Rev. B 74, 144426 (2006)CrossRefGoogle Scholar
  34. 34.
    H. Tsunetsugu, M. Arikawa, J. Phys. Soc. Jpn. 75, 083701 (2006)CrossRefGoogle Scholar
  35. 35.
    A. Läuchli, F. Mila, K. Penc, Phys. Rev. Lett. 97, 087205 (2006)CrossRefGoogle Scholar
  36. 36.
    H.-F. Lü, Z.-F. Xu, Phys. Lett. A 360, 169 (2006)CrossRefGoogle Scholar
  37. 37.
    Y.D. Panov, A.S. Moskvin, V.V. Konev, E.V. Vasinovich, V.A. Ulitko, Acta Phys. Pol. A 133, 426 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations