Advertisement

Studies on Terahertz Photon Counting Detectors with Low-Leakage SIS Junctions

  • Hajime EzawaEmail author
  • Hiroshi Matsuo
  • Masahiro Ukibe
  • Go Fujii
  • Shigetomo Shiki
Article
  • 6 Downloads

Abstract

We plan to realize a fast terahertz photon counting detector. The detector may resolve each photon signal from the source and enable us to introduce “photon statistics,” which will be a new measure for terahertz astronomy and astrophysics. An SIS junction with Nb/Al/AlOx/Al/Nb is considered for this detector, which should incorporate low leakage current of 1 pA. We have successfully developed an SIS junction to satisfy this requirement. The bandwidth is limited, while it is sufficient for laboratory experiments. We have designed an antenna-coupled SIS detector incorporating the low-leakage SIS junction for photon counting experiments. Additionally, the photo-response of the SIS junction is measured to discuss the photon counting capability in combination with the fast readout system.

Keywords

Superconducting tunnel junction Terahertz detector Photon counting 

Notes

Acknowledgements

Special thanks to Dr. Takafumi Kojima, Dr. Tom Nitta, Dr. Wenlei Shan, and Dr. Tai Oshima for fruitful discussions and their supports. This research was financially supported by the Matsuo Foundation, ISAS/JAXA, Grant-in-Aid for Exploratory Research of JSPS KAKENHI Grant Number 15K13469.

References

  1. 1.
  2. 2.
    ALMA partnership et al., Ap. J. 808, L3 (2015).  https://doi.org/10.1088/2041-8205/808/1/l3
  3. 3.
    H. Matsuo, J. Low Temp. Phys. 167, 840–845 (2012).  https://doi.org/10.1007/s10909-012-0579-6 ADSCrossRefGoogle Scholar
  4. 4.
    H. Matsuo, H. Ezawa, J. Low Temp. Phys. 184, 718–723 (2016).  https://doi.org/10.1007/s10909-015-1462-z ADSCrossRefGoogle Scholar
  5. 5.
    H. Ezawa, H. Matsuo, M. Ukibe, G. Fujii, S. Shiki, J. Low Temp. Phys. 184, 244–249 (2016).  https://doi.org/10.1007/s10909-015-1465-9 ADSCrossRefGoogle Scholar
  6. 6.
    H. Matsuo, S.-C. Shi, T. Noguchi, H. Akahori, T. Sato, Proc. SPIE 3357, 579–586 (1998).  https://doi.org/10.1117/12.317392 ADSCrossRefGoogle Scholar
  7. 7.
    J. Lau, M. Benna, M. Devlin, S. Dicker, L. Page, Cryogenics 46, 809–814 (2006).  https://doi.org/10.1016/j.cryogenics.2006.08.003 ADSCrossRefGoogle Scholar
  8. 8.
    H. Matsuo, H. Ezawa, Y. Kawamura, D. Kubo, N. Okada, R. Shimomukai, Compact 0.8 K Helium-4 sorption cooler, LTD-17 (2017)Google Scholar
  9. 9.
    S. Ariyoshi, H. Matsuo, C. Otani, H. Sato, H. Shimizu, T. Matsunaga, T. Noguchi, IEEE Trans. Appl. Supercond. 13, 1128–1131 (2003).  https://doi.org/10.1109/TASC.2003.814172 ADSCrossRefGoogle Scholar
  10. 10.
    M. Ukibe, S. Shiki, Y. Kitajima, M. Ohkubo, JJAP 51, 010115 (2012).  https://doi.org/10.1143/JJAP.51.010115 ADSGoogle Scholar
  11. 11.
    M. Maezawa, M. Aoyagi, H. Nakagawa, I. Kurosawa, S. Takeda, Appl. Phys. Lett. 66(16), 2134–2136 (1995).  https://doi.org/10.1063/1.113927 ADSCrossRefGoogle Scholar
  12. 12.
    S. Aroyoshi, T. Taino, A. Dobroiu, H. Sato, H. Matsuo, C. Otani, Appl. Phys. Lett. 95, 193504 (2009).  https://doi.org/10.1063/1.3263711 ADSCrossRefGoogle Scholar
  13. 13.
    J. Zmuidzinas, N.G. Ugras, D. Miller, M. Gaidis, I.E.E.E. Trans, Appl. Supercond. 5, 3053–3056 (1995).  https://doi.org/10.1109/77.403236 ADSCrossRefGoogle Scholar
  14. 14.
    D.F. Filipovic, S.S. Gearhart, G.M. Rebeiz, IEEE Trans. MTT 41, 1738–1749 (1993).  https://doi.org/10.1109/22.247919 CrossRefGoogle Scholar
  15. 15.
    T. Noguchi, S.C. Shi, J. Inatani, IEICE Trans. Elect. E78-C, 481–489 (1995)Google Scholar
  16. 16.
    S.C. Shi, T. Noguchi, IEICE Trans. Elect. E81-C, 1584–1594 (1998)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Astronomical Observatory of Japan (NAOJ)MitakaJapan
  2. 2.The Graduate University for Advanced Studies (SOKENDAI)MitakaJapan
  3. 3.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations