Journal of Low Temperature Physics

, Volume 196, Issue 1–2, pp 184–189 | Cite as

Vortex Emission from Quantum Turbulence Generated by Vibrating Wire in Superfluid \(^4\hbox {He}\)

  • H. YanoEmail author
  • K. Sato
  • K. Hamazaki
  • R. Mushiake
  • K. Obara
  • O. Ishikawa


To investigate the formation of quantum turbulence in superfluid \(^4\hbox {He}\), we have studied the vortex emission from a turbulence region generated by a vibrating wire. The time of flight of vortex rings emitted from a generator to a detector exhibits a single exponential distribution, suggesting that vortex detection is a Poisson process. This means that the detector observes vortex rings at irregular intervals with a mean interval time. Therefore, the single exponential distribution suggests a constant emission rate of vortex rings during turbulence generation, which is proportional to the mean detection rate. By setting a limit on the diameter of detected vortex rings, we find that the emission rate exhibits a power law relationship with the ring diameter. Since the diameter of a vortex ring is related to the vortex line spacing within turbulence when reconnection occurs, the distribution of vortex line spacings is considered to be reflected in the size distribution of the emission rate. Therefore, the power law dependence of the emission rate suggests that the vortex lines within turbulence have a self-similar fractal structure.


Superfluid \(^4\hbox {He}\) Quantum turbulence Vortex ring 



The authors are greatly indebted to M. Tsubota and S. Yui for stimulating discussions. This research was supported by JSPS KAKENHI Grant Number 15H03694.


  1. 1.
    N. Hashimoto, R. Goto, H. Yano, K. Obara, O. Ishikawa, T. Hata, Phys. Rev. B 76, 020504(R) (2007)CrossRefGoogle Scholar
  2. 2.
    D. Garg, V.B. Efimov, M. Giltrow, P.V.E. McClintock, L. Skrbek, W.F. Vinen, Phys. Rev. B 85, 144518 (2012)CrossRefGoogle Scholar
  3. 3.
    D.I. Bradley, S.N. Fisher, A.M. Guénault, R.P. Haley, M. Kumar, C.R. Lawson, R. Schanen, P.V.E. McClintock, L. Munday, G.R. Pickett, M. Poole, V. Tsepelin, P. Williams, Phys. Rev. B 85, 224533 (2012)CrossRefGoogle Scholar
  4. 4.
    R. Hänninen, M. Tsubota, W.F. Vinen, Phys. Rev. B 75, 064502 (2007)CrossRefGoogle Scholar
  5. 5.
    H. Yano, K. Ogawa, Y. Chiba, K. Obara, O. Ishikawa, J. Low Temp. Phys. 187, 515 (2017)CrossRefGoogle Scholar
  6. 6.
    H. Yano, Y. Nago, R. Goto, K. Obara, O. Ishikawa, T. Hata, Phys. Rev. B 81, 220507(R) (2010)CrossRefGoogle Scholar
  7. 7.
    Y. Nago, A. Nishijima, H. Kubo, T. Ogawa, K. Obara, H. Yano, O. Ishikawa, T. Hata, Phys. Rev. B 87, 024511 (2013)CrossRefGoogle Scholar
  8. 8.
    R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991)Google Scholar
  9. 9.
    R. Goto, S. Fujiyama, H. Yano, Y. Nago, N. Hashimoto, K. Obara, O. Ishikawa, M. Tsubota, T. Hata, Phys. Rev. Lett. 100, 045301 (2008)CrossRefGoogle Scholar
  10. 10.
    A. Nakatsuji, M. Tsubota, H. Yano, Phys. Rev. B 89, 174520 (2014)CrossRefGoogle Scholar
  11. 11.
    C.F. Barenghi, R. Hänninen, M. Tsubota, Phys. Rev. E 74, 046303 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Y. Wakasa, S. Oda, Y. Chiba, K. Obara, H. Yano, O. Ishikawa, T. Hata, J. Phys. Conf. Ser. 568, 012027 (2014)CrossRefGoogle Scholar
  13. 13.
    D. Kivotides, C.F. Barenghi, D.C. Samuels, Phys. Rev. Lett. 87, 155301 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • H. Yano
    • 1
    Email author
  • K. Sato
    • 1
  • K. Hamazaki
    • 1
  • R. Mushiake
    • 1
  • K. Obara
    • 1
  • O. Ishikawa
    • 1
  1. 1.Graduate School of ScienceOsaka City UniversityOsakaJapan

Personalised recommendations