Merging of Rotating Bose–Einstein Condensates

  • Toshiaki KanaiEmail author
  • Wei Guo
  • Makoto Tsubota


Merging of isolated Bose–Einstein condensates (BECs) is an important topic due to its relevance to matter-wave interferometry and the Kibble–Zurek mechanism. Many past research focused on merging of BECs with uniform initial phases. In our recent brief report (Kanai et al. in Phys Rev A 97:013612, 2018), we showed that upon merging of rotating BECs with non-uniform initial phases, spiral-shaped dark solitons can emerge. These solitons facilitate angular momentum transfer and allow the merged condensate to rotate even in the absence of quantized vortices. More strikingly, the sharp endpoints of these spiral solitons can induce rotational motion in the BECs like vortices but with effectively a fraction of a quantized circulation. This paper reports our systematic study on the merging dynamics of rotating BECs. We discuss how the relative winding number of the rotating BECs and the potential barrier that initially separates the BECs may affect the profile and dynamics of the spiral solitons. The number of spiral solitons created in the BECs is observed to always match exactly the relative winding number of the two BECs. The underlying mechanism for which the solitons can break up to form sharp endpoints with peculiar physical properties and why the number of solitons matches the relative winding number is identified and explained. These results improve our understanding of soliton dynamics, which may allow better manipulation of these non-topological phase defects when they are involved in various quantum transport processes.


Bose–Einstein condensates Spiral dark soliton Quantized vortices BEC merging Non-topological phase defects 



W. G. acknowledges the support by the National Science Foundation under Grant No. DMR-1507386 and the support from the National High Magnetic Field Laboratory, which is supported by NSF Grant No. DMR-1644779 and the state of Florida. M. T. would like to acknowledge the support by the Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant Nos. JP17K05548 and JP16H00807.


  1. 1.
    M.R. Andrews, C.G. Townsend, H.-J. Miesner, D.S. Durfa, D.M. Kurn, W. Ketterle, Science 275, 637 (1997)CrossRefGoogle Scholar
  2. 2.
    Y. Shin, M. Saba, T.A. Pasquini, W. Ketterle, D.E. Pritchard, A.E. Leanhardt, Phys. Rev. Lett. 92, 050405 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Z. Hadzibabic, S. Stock, B. Battelier, V. Bretin, J. Dalibard, Phys. Rev. Lett. 93, 180403 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Shin, C. Sanner, G.-B. Jo, T.A. Pasquini, M. Saba, W. Ketterle, D.E. Pritchard, M. Vengalattore, M. Prentiss, Phys. Rev. A 72, 021604 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    W.M. Liu, B. Wu, Q. Niu, Phys. Rev. Lett. 84, 2294 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    T. Yang, B. Xiong, K.A. Benedict, Phys. Rev. A 87, 023603 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    S. Stock, Z. Hadzibabic, B. Battelier, M. Cheneau, J. Dalibard, Phys. Rev. Lett. 95, 190403 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    D.R. Scherer, C.N. Weiler, T.W. Neely, B.P. Anderson, Phys. Rev. Lett. 98, 110402 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    B. Xiong, T. Yang, K.A. Benedict, Phys. Rev. A 88, 043602 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    S.J. Yang, Q.S. Wu, S.N. Zhang, S. Feng, W. Guo, Y.C. Wen, Y. Yu, Phys. Rev. A 76, 063606 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    S.J. Yang, Q.S. Wu, S. Feng, Y.C. Wen, Y. Yu, Phys. Rev. A 77, 035602 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    L.A. Toikka, O. Kärki, K.-A. Suominen, J. Phys. B: At. Mol. Opt. Phys. 47, 021002 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    C.N. Weiler, T.W. Neely, D.R. Scherer, A.S. Bradley, M.J. Davis, B.P. Anderson, Nature 455, 948–951 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    R. Carretero-González, B.P. Anderson, P.G. Kevrekidis, D.J. Frantzeskakis, C.N. Weiler, Phys. Rev. A 77, 033625 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbène, J. Dalibard, J. Beugnon, Phys. Rev. Lett. 113, 135302 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    G. Lamporesi, S. Donadello, S. Serafini, F. Dalfovo, G. Ferrari, Nat. Phys. 9, 656–C660 (2013)CrossRefGoogle Scholar
  17. 17.
    W.H. Zurek, Phys. Rep. 276, 177 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    T.W.B. Kibble, Phys. Today 60, 47 (2007)CrossRefGoogle Scholar
  19. 19.
    T. Kanai, W. Guo, M. Tsubota, Phys. Rev. A 97, 013612 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    L.P. Pitaevskii, S. Stringari, Bose–Einstein Condensation (Oxford University Press, Oxford, 2003)zbMATHGoogle Scholar
  21. 21.
    W.J. Kwon, J.H. Kim, S.W. Seo, Y. Shin, Phys. Rev. Lett. 117, 245301 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    F. Jendrzejewski, S. Eckel, N. Murray, C. Lanier, M. Edwards, C.J. Lobb, G.K. Campbell, Phys. Rev. Lett. 113, 045305 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    T.C. Killian, D.G. Fried, L. Willmann, D. Landhuis, S.C. Moss, T.J. Greytak, D. Kleppner, Phys. Rev. Lett. 81, 3807 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    A.L. Gaunt, T.F. Schmidutz, I. Gotlibovych, R.P. Smith, Z. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    M.L. Chiofalo, S. Succi, M.P. Tosi, Phys. Rev. E 62, 7438 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C. The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992)zbMATHGoogle Scholar
  27. 27.
    S. Eckel, F. Jendrzejewski, A. Kumar, C.J. Lobb, G.K. Campbell, Phys. Rev. X(4), 031052 (2014)CrossRefGoogle Scholar
  28. 28.
    A.D. Jackson, G.M. Kavoulakis, C.J. Pethick, Phys. Rev. A 58, 2417 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    A.V. Mamaev, M. Saffman, A.A. Zozulya, Phys. Rev. Lett. 76, 2262 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    G. Theocharis, D.J. Frantzeskakis, P.G. Kevrekidis, B.A. Malomed, Y.S. Kivshar, Phys. Rev. Lett. 90, 120403 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    M. Ma, R. Carretero-González, P.G. Kevrekidis, D.J. Frantzeskakis, B.A. Malomed, Phys. Rev. A 82, 023621 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    I. Shomroni, E. Lahoud, S. Levy, J. Steinhauer, Nat. Phys. 5, 193–197 (2009)CrossRefGoogle Scholar
  33. 33.
    H.L.F. von Helmholtz, Monatsberichte der königl (Akademie Wissenschaften, Berlin, 1868)Google Scholar
  34. 34.
    Lord Kelvin (Sir W. Thomson), Mathematical and Physical Papers, Vol. 4: Hydrodynamics and General Dynamics. (Cambridge University Press, Cambridge, 1910)Google Scholar
  35. 35.
    R. Blaauwgeers, V.B. Eltsov, G. Eska, A.P. Finne, R.P. Haley, M. Krusius, J.J. Ruohio, L. Skrbek, G.E. Volovik, Phys. Rev. Lett. 89, 155301 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    G.E. Volovik, JETP Lett. 75, 491C495 (2002)Google Scholar
  37. 37.
    H. Takeuchi, N. Suzuki, K. Kasamatsu, H. Saito, M. Tsubota, Phys. Rev. B 81, 094517 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    E. Lundh, J.-P. Martikainen, Phys. Rev. A 85, 023628 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National High Magnetic Field LaboratoryTallahasseeUSA
  2. 2.Department of PhysicsFlorida State UniversityTallahasseeUSA
  3. 3.Mechanical Engineering DepartmentFlorida State UniversityTallahasseeUSA
  4. 4.Department of PhysicsOsaka City UniversitySumiyoshi-KuJapan
  5. 5.The OCU Advanced Research Institute for Natural Science and Technology (OCARINA)Osaka City UniversitySumiyoshi-KuJapan

Personalised recommendations