# Molecular Tagging Velocimetry in Superfluid Helium-4: Progress, Issues, and Future Development

- 83 Downloads

## Abstract

Helium-4 in the superfluid phase (He II) is a two-fluid system that exhibits fascinating quantum hydrodynamics with important scientific and engineering applications. However, the lack of high-precision flow measurement tools in He II has impeded the progress in understanding and utilizing its hydrodynamics. In recent years, there have been extensive efforts in developing quantitative flow visualization techniques applicable to He II. In particular, a powerful molecular tagging velocimetry (MTV) technique, based on tracking thin lines of \(\hbox {He}^*_2\) excimer molecules created via femtosecond laser-field ionization in helium, has been developed in our laboratory. This technique allows unambiguous measurement of the normal fluid velocity field in the two-fluid system. Nevertheless, there are two limitations to this technique: (1) only the velocity component perpendicular to the tracer line can be measured; and (2) there is an inherent error in determining the perpendicular velocity. In this paper, we discuss how these issues can be resolved by advancing the MTV technique. We also discuss two novel schemes for tagging and producing \(\hbox {He}^*_2\) tracers. The first method allows the creation of a tagged \(\hbox {He}^*_2\) tracer line without the use of an expensive femtosecond laser. The second method enables full-space velocity field measurement through tracking small clouds of \(\hbox {He}^*_2\) molecules created via neutron-\(^3\hbox {He}\) absorption reactions in He II.

## Keywords

Quantum turbulence Superfluid helium-4 Flow visualization Molecular tagging \(\hbox {He}^*_2\) excimer## Notes

### Acknowledgements

The author would like to acknowledge the contributions made by previous and current students in the laboratory, including J. Gao, A. Marakov, E. Varga, B. Mastracci, S. Bao, Y. Zhang, and H. Sanavandi. The author would also like to thank many colleagues in quantum turbulence and classical fluid dynamics research fields for valuable discussions. The work has been supported by US Department of Energy under Grant No. DE-FG02-96ER40952 and by the National Science Foundation under Grants Nos. DMR-1807291 and CBET-1801780. All the experiments have been performed at the National High Magnetic Field Laboratory, which is supported by NSF Grant No. DMR-1644779 and the state of Florida.

## References

- 1.D.R. Tilley, J. Tilley,
*Superfluidity and Superconductivity*, 2nd edn. (Published in association with the University of Sussex Press, Boston, 1986)zbMATHGoogle Scholar - 2.R.J. Donnelly,
*Quantized Vortices in Helium II*(Cambridge University Press, Cambridge, 1991)Google Scholar - 3.W.F. Vinen, J.J. Niemela, Quantum turbulence. J. Low Temp. Phys.
**129**, 213–213 (2002)CrossRefGoogle Scholar - 4.W.F. Vinen, Mutual friction in a heat current in liquid helium II. I. Experiments on steady heat currents. Proc. R. Soc. Lond.
**A 240**, 114–127 (1957)Google Scholar - 5.W. Van Sciver,
*Helium Cryogenics*, 2nd edn. (Springer, New York, 2012)CrossRefGoogle Scholar - 6.E. Blanco, A. Calzas, J. Casas-Cubillos, P. Gomes, S. Knoops, L. Serio, R. Van Weelderen, Experimental validation and operation of the LHC Test String 2 cryogenic system. AIP Conf. Proc.
**710**, 233–240 (2004)CrossRefGoogle Scholar - 7.M.A. Taber, D.O. Murry, J.R. Maddocks, K.M. Burns, Operational cryogenic experience with the gravity probe B payload. AIP Conf. Proc.
**613**, 1241–1248 (2002)CrossRefGoogle Scholar - 8.A. Bonitooliva, M.B. Gorbunov, K. Iyengar, J. Miller, S.W. Van Sciver, S. Welton, Thermal-analysis of the superconducting outsert of the NHMFL 45-T hybrid magnet system. Cryogenics
**34**, 713–716 (1994)CrossRefGoogle Scholar - 9.R.J. Donnelly,
*High Reynolds Number Flows Using Liquid and Gaseous Helium*(Springer, New York, 1991)CrossRefGoogle Scholar - 10.L. Skrbek, J.J. Niemela, R.J. Donnelly, Turbulent flows at cryogenic temperatures: a new frontier. J. Phys. Condens. Matter
**11**, 7761–7781 (1999)CrossRefGoogle Scholar - 11.K.R. Sreenivasan, R.J. Donnelly, Role of cryogenic helium in classical fluid dynamics: basic research and model testing. Adv. Appl. Mech.
**37**, 239–276 (2001)CrossRefGoogle Scholar - 12.W. Guo, D.P. Lathrop, M.L. Mantia, S.W. Van Sciver, Visualization of two-fluid flows of superfluid helium-4 at finite temperatures. Proc. Natl. Acad. Sci.
**111**, 4653 (2014)CrossRefGoogle Scholar - 13.S.W. Van Sciver, S. Fuzier, T. Xu, Particle image velocimetry studies of counterflow heat transport in superfluid helium II. J. Low Temp. Phys.
**148**, 225 (2007)CrossRefGoogle Scholar - 14.T. Zhang, S.W. Van Sciver, Large-scale turbulent flow around a cylinder in counterflow superfluid He-4 (He(II)). Nat. Phys.
**1**, 36 (2005)CrossRefGoogle Scholar - 15.M. La Mantia, D. Duda, M. Rotter, L. Skrbek, Lagrangian accelerations of particles in superfluid turbulence. J. Fluid Mech.
**717**, R9 (2013)MathSciNetCrossRefzbMATHGoogle Scholar - 16.M.S. Paoletti, R.B. Fiorito, K.R. Sreenivasan, D.P. Lathrop, Visualization of superfluid helium flow. J. Phys. Soc. Jpn.
**77**, 111007 (2008)CrossRefGoogle Scholar - 17.G.P. Bewley, D.P. Lathrop, K.R. Sreenivasan, Superfluid helium—visualization of quantized vortices. Nature
**441**, 588 (2006)CrossRefGoogle Scholar - 18.M.S. Paoletti, M.E. Fisher, K.R. Sreenivasan, D.P. Lathrop, Velocity statistics distinguish quantum turbulence from classical turbulence. Phys. Rev. Lett.
**101**, 154501 (2008)CrossRefGoogle Scholar - 19.G.P. Bewley, M.S. Paoletti, K.R. Sreenivasan, D.P. Lathrop, Characterization of reconnecting vortices in superfluid helium. Proc. Natl. Acad. Sci.
**105**, 13707 (2008)CrossRefGoogle Scholar - 20.E. Fonda, D.P. Meichle, N.T. Ouellette, S. Hormoz, D.P. Lathrop, Direct observation of Kelvin waves excited by quantized vortex reconnection. Proc. Natl. Acad. Sci.
**111**, 4707 (2014)CrossRefGoogle Scholar - 21.D. Kivotides, Motion of a spherical solid particle in thermal counterflow turbulence. Phys. Rev. B
**77**, 174508 (2008)CrossRefGoogle Scholar - 22.B. Mastracci, W. Guo, An exploration of thermal counterflow in He II using particle tracking velocimetry. Phys. Rev. Fluid
**3**, 063304 (2018)CrossRefGoogle Scholar - 23.W. Guo, J.D. Wright, S.B. Cahn, J.A. Nikkel, D.N. McKinsey, Metastable helium molecules as tracers in superfluid He-4. Phys. Rev. Lett.
**102**, 235301 (2009)CrossRefGoogle Scholar - 24.W. Guo, J.D. Wright, S.B. Cahn, J.A. Nikkel, D.N. McKinsey, Studying the normal-fluid flow in helium-II using metastable helium molecules. J. Low Temp. Phys.
**158**, 346–352 (2010)CrossRefGoogle Scholar - 25.W. Guo, S.B. Cahn, J.A. Nikkel, W.F. Vinen, D.N. McKinsey, Visualization study of counterflow in superfluid \(^4\text{ He }\) using metastable helium molecules. Phys. Rev. Lett.
**105**, 045301 (2010)CrossRefGoogle Scholar - 26.D.N. McKinsey, C.R. Brome, J.S. Butterworth, S.N. Dzhosyuk, P.R. Huffman, C.E.H. Mattoni, J.M. Doyle, R. Golub, K. Habicht, Radiative decay of the metastable \(\text{ He }_2\)(\(a^3\varSigma ^{+}_u\)) molecule in liquid helium. Phys. Rev. A
**59**, 200–204 (1999)CrossRefGoogle Scholar - 27.A.V. Benderskii, J. Eloranta, R. Zadoyan, V.A. Apkarian, A direct interrogation of superfluidity on molecular scales. J. Chem. Phys.
**117**, 1201–1213 (2002)CrossRefGoogle Scholar - 28.D. Mateo, J. Eloranta, G.A. Williams, Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid He-4. J. Chem. Phys.
**142**, 064510 (2015)CrossRefGoogle Scholar - 29.D.E. Zmeev, F. Pakpour, P.M. Walmsley, A.I. Golov, W. Guo, D.N. McKinsey, G.G. Ihas, P.V. McClintock, S.N. Fisher, W.F. Vinen, Excimers \(\text{ He }^*_2\) as tracers of quantum turbulence in \(^4\text{ He }\) in the \(T=0\) limit. Phys. Rev. Lett.
**110**, 175303 (2013)CrossRefGoogle Scholar - 30.D.N. McKinsey, W.H. Lippincott, J.A. Nikkel, W.G. Rellergert, Trace detection of metastable helium molecules in superfluid helium by laser-induced fluorescence. Phys. Rev. Lett.
**95**, 111101 (2005)CrossRefGoogle Scholar - 31.W.G. Rellergert, S.B. Cahn, A. Garvan, J.C. Hanson, W.H. Lippincott, J.A. Nikkel, D.N. McKinsey, Detection and imaging of \(\text{ He }^*_2\) molecules in superfluid helium. Phys. Rev. Lett.
**100**, 025301 (2008)CrossRefGoogle Scholar - 32.J. Gao, A. Marakov, W. Guo, B.T. Pawlowski, S.W. Van Sciver, G.G. Ihas, D.N. McKinsey, W.F. Vinen, Producing and imaging a thin line of \(\text{ He }^*_2\) molecular tracers in helium-4. Rev. Sci. Instrum.
**86**, 093904 (2015)CrossRefGoogle Scholar - 33.A. Marakov, J. Gao, W. Guo, S.W. Van Sciver, G.G. Ihas, D.N. McKinsey, W.F. Vinen, Visualization of the normal-fluid turbulence in counterflowing superfluid He-4. Phys. Rev. B
**91**, 094503 (2015)CrossRefGoogle Scholar - 34.J. Gao, W. Guo, V.S. L’vov, A. Pomyalov, L. Skrbek, E. Varga, W.F. Vinen, Challenging problem in quantum turbulence: decay of counterflow in superfluid \(^4\text{ He }\). JETP Lett.
**103**, 732 (2016)CrossRefGoogle Scholar - 35.J. Gao, W. Guo, W.F. Vinen, Determination of the effective kinematic viscosity for the decay of quasiclassical turbulence in superfluid \(^4\text{ He }\). Phys. Rev. B
**94**, 094502 (2016)CrossRefGoogle Scholar - 36.J. Gao, E. Varga, W. Guo, W.F. Vinen, Statistical measurement of counterflow turbulence in superfluid helium-4 using \(\text{ He }^*_2\) tracer-line tracking technique. J. Low Temp. Phys.
**187**, 490 (2017)CrossRefGoogle Scholar - 37.J. Gao, E. Varga, W. Guo, W.F. Vinen, Energy spectrum of thermal counterflow turbulence in superfluid helium-4. Phys. Rev. B
**96**, 094511 (2017)CrossRefGoogle Scholar - 38.J. Gao, W. Guo, W.F. Vinen, S. Yui, M. Tsubota, Dissipation in quantum turbulence in superfluid \(^4\text{ He }\). Phys. Rev. B
**97**, 184518 (2018)CrossRefGoogle Scholar - 39.R.B. Miles, W. Lempert, B. Zhang, Turbulent structure measurements by relief flow tagging. Fluid Dyn. Res.
**8**, 9–17 (1991)CrossRefGoogle Scholar - 40.R.B. Miles, W.R. Lempert, Quantitative flow visualization in unseeded flows. Annu. Rev. Fluid Mech.
**29**, 285 (1997)CrossRefGoogle Scholar - 41.P. Hammer, S. Pouya, A. Naguib, M. Koochesfahani, A multi-time-delay approach for correction of the inherent error in single-component molecular tagging velocimetry. Meas. Sci. Technol.
**24**, 105302 (2013)CrossRefGoogle Scholar - 42.F. Chen, H.X. Li, H. Hu, Molecular tagging techniques and their applications to the study of complex thermal flow phenomena. Acta Mech. Sin.
**31**, 425 (2015)MathSciNetCrossRefzbMATHGoogle Scholar - 43.D.G. Bohl, M.M. Koochesfahani, B.J. Olson, Development of stereoscopic molecular tagging velocimetry. Exp. Fluids
**30**, 302 (2001)CrossRefGoogle Scholar - 44.M. Raffel, C.E. Villert, S.T. Werely, J. Kompenhans,
*Particle Image Velocimetry—A Practical Guide*, 2nd edn. (Springer, Berlin, 2007)CrossRefGoogle Scholar - 45.W. Guo, New techniques for visualization study of normal-fluid turbulence in superfluid He-4 using metastable \(\text{ He }^*_2\) molecules. Invited talk presented at the Workshop on Turbulence in Quantum Two-Fluid Systems, Abu Dhabi, UAE (05/2012)Google Scholar
- 46.W. Guo, Application of neutron in the study of quantum fluid hydrodynamics. Invited talk presented at the Workshop on Very Cold Neutron Source for the Second Target Station Workshop, Oak Ridge National Lab, Knoxville, TN, United States (05/2016)Google Scholar
- 47.M.E. Hayden, G. Archibald, P.D. Barnes, W.T. Buttler, D.J. Clark, M.D. Cooper, M. Espy, R. Golub, G.L. Greene, S.K. Lamoreaux, C. Lei, L.J. Marek, J.C. Peng, S.I. Penttila, Neutron-detected tomography of impurity-seeded superfluid helium. Phys. Rev. Lett.
**93**, 105302 (2004)CrossRefGoogle Scholar - 48.L.D.P. King, L. Goldstein, The total cross section of the He-3 nucleus for slow neutrons. Phys. Rev.
**75**, 1366–1369 (1949)CrossRefGoogle Scholar - 49.J.S. Meyer, T. Sloan, Neutron interactions in liquid He-3. J. Low Temp. Phys.
**108**, 345–354 (1997)CrossRefGoogle Scholar - 50.W. Guo, D.N. McKinsey, Concept for a dark matter detector using liquid helium-4. Phys. Rev. D
**87**, 115011 (2013)CrossRefGoogle Scholar - 51.T.M. Ito, G.M. Seidel, Scintillation of liquid helium for low-energy nuclear recoils. Phys. Rev. C
**88**, 025805 (2013)CrossRefGoogle Scholar - 52.Collaboration of Neutron-\(^3\text{ He }\) project at the Japan Proton Accelerator Research Complex (J-PARC): T. Matsushita, V. Sonnenschein, W. Guo, H. Hayashida, K. Hiroi, K. Hirota, T. Iguchi, D. Ito, M. Kitaguchi, Y. Kiyanagi, S. Kokuryu, W. Kubo, Y. Saito, H. M. Shimizu, T. Shinohara, S. Suzuki, H. Tomita, Y. Tsuji, and N. WadaGoogle Scholar
- 53.T. Matsushita, V. Sonnenschein, W. Guo, H. Hayashida, K. Hiroi, K. Hirota, T. Iguchi, D. Ito, M. Kitaguchi, Y. Kiyanagi, S. Kokuryu, W. Kubo, Y. Saito, H. M. Shimizu, T. Shinohara, S. Suzuki, H. Tomita, Y. Tsuji, N. Wada, Generation of \(^4\text{ He }_2\) clusters via neutron-\(^3\text{ He }\) absorption reaction towards visualization of full velocity field in quantum turbulence. J. Low Temp. Phys., this Special Issue QFS2018 (2019)Google Scholar
- 54.Collaboration of Neutron-\(^3\text{ He }\) project at the Oak Ridge National Lab: S. Bao, L. Crow, M. Fitzsimmons, G. Greene, W. Guo, L. McDonald, T. Mezzacappa, J. Pierce, X. Tong, X. Wen, and Y. ZhaoGoogle Scholar
- 55.S. Kakac, Y. Yener, A. Pramuanjaroenkij,
*Convective Heat Transfer*, 3rd edn. (Taylor and Francis, Boca Raton, 2013)zbMATHGoogle Scholar - 56.J.J. Niemela, K.R. Sreenivasan, The use of cryogenic helium for classical turbulence: promises and hurdles. J. Low Temp. Phys.
**143**, 163 (2006)CrossRefGoogle Scholar - 57.J.J. Niemela, L. Skrbek, K.R. Sreenivasan, R.J. Donnelly, Turbulent convection at very high Rayleigh numbers. Nature
**404**, 837 (2000)CrossRefGoogle Scholar - 58.P.E. Roche, F. Gauthier, R. Kaiser, J. Salort, On the triggering of the ultimate regime of convection. New J. Phys.
**12**, 085014 (2010)CrossRefGoogle Scholar - 59.P. Urban, P. Hanzelka, T. Kralik, V. Musilova, A. Srnka, L. Skrbek, Effect of boundary layers asymmetry on heat transfer efficiency in turbulent Rayleigh–Benard convection at very high Rayleigh numbers. Phys. Rev. Lett.
**109**, 154301 (2012)CrossRefGoogle Scholar