Advertisement

Journal of Low Temperature Physics

, Volume 194, Issue 3–4, pp 262–272 | Cite as

Temperature Effects on the First Excited State of the Polaron in an Asymmetric Quantum Pseudodot Under Magnetic Field

  • Ying-Jie ChenEmail author
  • Pei-Yu Zhang
Article
  • 12 Downloads

Abstract

Using the variational method of the Pekar type, we investigate the first excited state energy of the polaron in an asymmetric quantum pseudodot under the magnetic field. Temperature effects on the polaron are calculated by employing the quantum statistical theory, and the influences of the chemical potential, the zero point of pseudo-harmonic potential (PHP), the cyclotron frequency, the electron–phonon coupling strength and the transverse and the longitudinal effective confinement lengths are taken into account. The results show that the first excited state energy decreases (increases) when the temperature is increased at lower (higher) temperature region. And it is an increasing function of the chemical potential, the zero point of PHP, the cyclotron frequency and the electron–phonon coupling strength. Simultaneously, it is a decreasing one of the transverse and the longitudinal effective confinement lengths.

Keywords

Temperature effect Magnetic field Polaron First excited state Asymmetric quantum pseudodot 

References

  1. 1.
    T.D. Krauss, Nat. Phys. 2, 513 (2006)CrossRefGoogle Scholar
  2. 2.
    G. Sek, P. Podemski, J. Misiewicz, L.H. Li, A. Fiore, G. Patriarche, Appl. Phys. Lett. 92, 021901 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    J.S. Kamal, R. Gomes, Z. Hens, M. Karvar, K. Neyts, S. Compernolle, F. Vanhaecke, Phys. Rev. B 85, 035126 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    R. Anufriev, J.B. Barakat, G. Patriarche, X. Letartre, C.B. Chevallier, J.C. Harmand, M. Gendry, N. Chauvin, Nanotechnology 26, 395701 (2015)CrossRefGoogle Scholar
  5. 5.
    A.L. Vartanian, M.A. Yeranosyan, A.A. Kirakosyan, J. Contemp. Phys. 42, 230 (2007)CrossRefGoogle Scholar
  6. 6.
    C.L. Tsai, K.Y. Cheng, S.T. Chou, S.Y. Lin, Appl. Phys. Lett. 91, 181105 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    C.Y. Hsieh, P. Hawrylak, Phys. Rev. B 82, 20531 (2010)CrossRefGoogle Scholar
  8. 8.
    T. Kwapiński, R. Taranko, Phys. Rev. A 86, 052338 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    M. Moreno, C.J.B. Ford, Y. Jin, J.P. Griffiths, I. Farrer, G.A.C. Jones, D.A. Ritchie, O. Tsyplyatyev, A.J. Schofield, Nat. Commun. 7, 12784 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    D.P. DiVincenzo, Science 9, 2173 (2005)CrossRefGoogle Scholar
  11. 11.
    B. Urbaszek, Nat. Phys. 9, 65 (2013)CrossRefGoogle Scholar
  12. 12.
    L. Kinnischtzke, K.M. Goodfellow, C. Chakraborty, Y.M. Lai, S. Fält, W. Wegscheider, A. Badolato, A.N. Vamivakas, Appl. Phys. Lett. 108, 211905 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Y.C. Zhang, X. Zhang, Z.L. Ye, G.X. Lin, J.C. Chen, Appl. Phys. Lett. 110, 153501 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    M. Tiotsop, A.J. Fotue, H.B. Fotsin, L.C. Fai, Superlattices Microstruct. 105, 163 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    A. Cetin, Phys. Lett. A 372, 3852 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    W.F. Xie, S.J. Liang, Physica B 406, 4657 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    R. Khordad, Int. J. Mod. Phys. B 29, 1550058 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    R. Khordad, Physica E 69, 249 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    J.L. Xiao, J. Inner Mongolia Univ. Natl. 31, 369 (2016)Google Scholar
  20. 20.
    X.J. Ma, B. Qi, J.L. Xiao, J. Low Temp. Phys. 180, 315 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    J.L. Xiao, Mod. Phys. Lett. B 29, 1550098 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Sun, Z.H. Ding, J.L. Xiao, J. Electron. Mater. 45, 3576 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    R. Khordad, A. Ghanbari, Opt. Quant. Electron. 49, 76 (2017)CrossRefGoogle Scholar
  24. 24.
    J.L. Xiao, Int. J. Theor. Phys. 55, 4918 (2016)CrossRefGoogle Scholar
  25. 25.
    J.L. Xiao, Chin. Phys. B 26, 027104 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    L.Q. Feng, J.L. Xiao, Opt. Quant. Electron. 48, 459 (2016)CrossRefGoogle Scholar
  27. 27.
    C.Y. Cai, C.L. Zhao, J.L. Xiao, J. Electron. Mater. 46, 971 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Sun, Z.H. Ding, J.L. Xiao, Commun. Theor. Phys. 67, 337 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    W. Xiao, J.L. Xiao, Chin. J. Lumin. 28, 657 (2007)Google Scholar
  30. 30.
    H.C. Tian, J.L. Xiao, Acta Sin. Quant. Opt. 15, 196 (2009)Google Scholar
  31. 31.
    X.J. Miao, Y. Sun, J.L. Xiao, Indian J. Phys. 88, 777 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Z.H. Liang, Chin. J. Low Temp. Phys. 36, 50 (2014)ADSGoogle Scholar
  33. 33.
    J.L. Xiao, J. Phys. Soc. Jpn. 83, 034004 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Z.H. Liang, B. Qi, J.L. Xiao, Indian J. Phys. 89, 1247 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    G. Saren, Y. Aqifu, C.Y. Sun, J.L.Xiao Cai, Chin. J. Low Temp. Phys. 37, 414 (2015)Google Scholar
  36. 36.
    Y.J. Chen, J.L. Xiao, Acta Phys. Sin. 57, 6758 (2008). (in Chinese) Google Scholar
  37. 37.
    Y.J. Chen, J.L. Xiao, Commun. Theor. Phys. 52, 601 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    Y.J. Chen, J.L. Xiao, J. Low Temp. Phys. 170, 60 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    J.L. Xiao, J. Low Temp. Phys. 172, 122 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    S.P. Shan, S.H. Chen, J.L. Xiao, J. Low Temp. Phys. 176, 93 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    J.F. Zhang, S.P. Shan, J. Low Temp. Phys. 177, 283 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    Z.X. Li, J. Low Temp. Phys. 181, 30 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    X.Q. Wang, J.L. Xiao, Iran. J. Sci. Technol. 41, 273 (2017)CrossRefGoogle Scholar
  44. 44.
    R. Khordad, H.R.R. Sedehi, Indian J. Phys. 91, 825 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    Y.J. Chen, J.L. Xiao, J. Low Temp. Phys. 186, 241 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    Y.J. Chen, H.T. Song, J.L. Xiao, Indian J. Phys. 92, 587 (2018)ADSCrossRefGoogle Scholar
  47. 47.
    Y.J. Chen, H.T. Song, J.L. Xiao, Superlattices Microstruct. 113, 82 (2018)ADSCrossRefGoogle Scholar
  48. 48.
    Y.J. Chen, X. Wang, Int. J. Theor. Phys. 57, 3540 (2018)CrossRefGoogle Scholar
  49. 49.
    Y.J. Chen, H.T. Song, J.L. Xiao, Superlattices Microstruct. 118, 92 (2018)ADSCrossRefGoogle Scholar
  50. 50.
    L.D. Landau, S.I. Pekar, Z. Eksp, Teor. Fiz. 18, 419 (1948)Google Scholar
  51. 51.
    S.I. Pekar, M.F. Deigen, Z. Eksp, Teor. Fiz. 18, 481 (1948)Google Scholar
  52. 52.
    S.I. Pekar, Untersuchungen über die Elektronen-theorie der Kristalle (Akademie Verlag, Berlin, 1954)zbMATHGoogle Scholar
  53. 53.
    W. Xiao, B. Qi, J.L. Xiao, J. Low Temp. Phys. 179, 166 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    Z.H. Ding, Y. Sun, J.L. Xiao, Int. J. Quantum Inf. 10, 1250077 (2012)MathSciNetCrossRefGoogle Scholar
  55. 55.
    N. Tokuda, J. Phys. C Solid State Phys. 13, L851 (1980)ADSCrossRefGoogle Scholar
  56. 56.
    W. Xiao, J.L. Xiao, Pramana J. Phys. 81, 865 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    G. Grimvall, The Electron–Phonon Interaction in Metals, vol. 8 (North-Holland Publishing Company, Amsterdam, 1981)Google Scholar
  58. 58.
    W. Xiao, J.L. Xiao, Chin. J. Lumin. 27, 849 (2006)Google Scholar
  59. 59.
    G.W. Wang, J.L. Xiao, J. At. Mol. Phys. 28, 112 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information TechnologyQufu Normal UniversityQufuChina

Personalised recommendations