Journal of Low Temperature Physics

, Volume 194, Issue 3–4, pp 285–301 | Cite as

Shear Piezoelectric and Dielectric Properties of \({\hbox {LiNbO}}_{3}\), PMN-PT and PZT-5A at Low Temperatures

  • Md Shahidul Islam
  • John BeamishEmail author


We have measured the low-temperature shear piezoelectric and dielectric constants of single-crystal lithium niobate (\(\hbox {LiNbO}_{3}\)) and lead magnesium niobate–lead titanate (PMN-PT), and of ceramic lead zirconium titanate (PZT-5A) transducers between room temperature and 78 mK. The piezoelectric and dielectric coefficients \(d_{15}\) and \(K^{\sigma }_{15}\) all decrease with temperature, although the total change in \(d_{15}\) is only about 7% for \(\hbox {LiNbO}_3\). The values of \(d_{15}\) for PZT-5A and PMN-PT are much larger at room temperature but decrease much more rapidly, by factors of 4 for PZT-5A and 10 for PMN-PT. For \(\hbox {LiNbO}_3\), \(d_{15}\) is constant below 50 K, but in both PZT-5A and PMN-PT \(d_{15}\) continues to decrease nearly linearly to the lowest temperatures. The behavior of the dielectric constant of each material mirrors that of \(d_{15}\), reflecting their common ferroelectric origins. The piezoelectric voltage constants \(g_{15}\) are similar in the three materials and are only weakly temperature dependent. For actuator applications where large displacements are needed, PMN-PT and PZT-5A have much larger \(d_{15}\) values than \(\hbox {LiNbO}_3\), but this advantage essentially disappears at low temperatures and \(\hbox {LiNbO}_3\) is a better choice in many applications. For sensor applications where \(g_{15}\) determines a transducer’s output voltage, the three materials have similar sensitivity for high-frequency applications like ultrasonics. At low frequencies, however, they are less sensitive as voltage sensors and the use of charge or current amplifiers is preferable.


Piezoelectric Dielectric Cryogenic \(\hbox {LiNbO}_{3}\) PMN-PT PZT 



This work was supported by a grant from the Natural Sciences and Engineering Council of Canada.


  1. 1.
    R.G. Loewy, Recent developments in smart structures with aeronautical applications. Smart Mater. Struct. 6, R11–R42 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    Q. Zhou, K.H. Lam, H. Zheng, W. Qiu, K.K. Shung, Piezoelectric single crystal ultrasonic transducers for biomedical applications. Prog. Mater. Sci. 66, 87–111 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Day, J. Beamish, Low-temperature shear modulus changes in solid \({}^{4}\text{ He }\) and connection to supersolidity. Nature 450, 853–856 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    A. Haziot, X. Rojas, A.D. Fefferman, J.R. Beamish, S. Balibar, Giant plasticity of a quantum crystal. Phys. Rev. Lett. 110, 035301 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    D.Y. Kim, H. Choi, W. Choi, S. Kwon, E. Kim, H.C. Kim, Unaffected nonclassical response of solid \({}^4\text{ He }\) under elastic modulus variation. Phys. Rev. B 83, 052503 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    S.A. Elrod, A.L. de Lozanne, C.F. Quate, Low-temperature vacuum tunneling microscopy. Appl. Phys. Lett. 45(11), 1240–1242 (1984)ADSCrossRefGoogle Scholar
  7. 7.
    B. Yurke, P.G. Kaminsky, D.M. Eigler, Cryogenic piezoelectric displacement tester. Cryogenics 26(7), 435–436 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    F. Wang, W. Shi, S. Wing Or, X. Zhao, H. Luo, Cryogenic transverse and shear mode properties of (1–x)Pb(\({Mg}_{1/3}\) \(Nb_{2/3}\)) \( {O}_{3} \)-\( {xPbTiO}_{3}\) single crystal with the optimal crystallographic direction. Mater. Chem. Phys. 125(3), 718–722 (2011)CrossRefGoogle Scholar
  9. 9.
    M.W. Hooker, Properties of PZT-based piezoelectric ceramics between-150 and 250 C, NASA Technical Reports (1998)Google Scholar
  10. 10.
    G. Gautschi, Piezoelectric Sensorics (Springer, Berlin, 2002), p. 41CrossRefGoogle Scholar
  11. 11.
    R.G. Sabat, B.K. Mukherjee, W. Ren, G. Yang, Temperature dependence of the complete material cofficients matrix of soft and hard doped piezoelectric lead zirconate titanate ceramics. J. Appl. Phys. 101(6), 064111 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    X.L. Zhang, Z.X. Chen, L.E. Cross, W.A. Schulze, Dielectric and piezoelectric properties of modified lead titanate zirconate ceramics from 4.2 to 300 K. J. Mater. Sci. 18(4), 968–972 (1983)ADSCrossRefGoogle Scholar
  13. 13.
    R.T. Smith, F.S. Welsh, Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J. Appl. Phys. 42(6), 2219–2230 (1971)ADSCrossRefGoogle Scholar
  14. 14.
    T. Yamada, N. Niizeki, H. Toyoda, Piezoelectric and elastic properties of lithium niobate single crystals. Jpn. J. Appl. Phys. 6(2), 151 (1967)ADSCrossRefGoogle Scholar
  15. 15.
    R.S. Weis, T.K. Gaylord, Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A Mater. Sci. Process. 37(4), 191–203 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    K. Nassau, H.J. Levinstein, G.M. Lioacono, Ferroelectric lithium niobate: 2. Preparation of single domain crystals. J. Phys. Chem. Solids 27, 989–996 (1966)ADSCrossRefGoogle Scholar
  17. 17.
    M.C. Wengler, M. Muller, E. Soergel, K. Buse, Poling dynamics of lithium niobate crystals. Appl. Phys. B 76, 393–396 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    F. Martin, H.J.M. ter Brake, L. Lebrun, S. Zhang, T. Shrout, Dielectric and piezoelectric activities in (1–x)Pb(\(\text{ Mg }_{1/3}\) \(\text{ Nb }_{2/3}\)) \(\text{ O }_{3} \)-\(\text{ xPbTiO }_{3}\) single crystals from 5 K to 300 K. J. Appl. Phys. 111(10), 104108 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    S. Bukhari, M. Islam, A. Haziot, J. Beamish, Shear piezoelectric coefficients of PZT, LiNbO3 and PMN-PT at cryogenic temperatures. J. Phys. Conf. Ser. 568, 032004 (2014)CrossRefGoogle Scholar
  20. 20.
    41\( ^{\circ } \) X-cut lithium niobate shear transducers, \(10.00\times 10.00\times 0.25\) mm with chrome/gold electrodes, supplied by Boston Piezo-Optics, Inc. Accessed 20 Nov 2018
  21. 21.
    TRS X2A single crystal lead magnesium niobate-lead titanate (PMN-PT) shear plates, \(10.00\times 10.00\times 1.00\,\text{ mm }\) with chrome/gold electrodes, supplied by TRS Technologies, Inc. Accessed 20 Nov 2018
  22. 22.
    PZT-5A ceramic shear transducers, \( 12.77\times 9.58\times 1.78\,\text{ mm }\) with chrome/gold electrodes, supplied by Boston Piezo-Optics, IncGoogle Scholar
  23. 23.
    Andeen-Hagerling 2550A 1 kHz AC capacitance bridge. Accessed 20 Nov 2018
  24. 24.
    A.W. Warner, M. Onoe, G.A. Coquin, Determination of elastic and piezoelectric constants for crystals in class (3 m). J. Acoust. Soc. Am. 42(6), 1223–1231 (1967)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of AlbertaEdmontonCanada

Personalised recommendations