Advertisement

Journal of Low Temperature Physics

, Volume 194, Issue 3–4, pp 273–284 | Cite as

Operation of a Latching, Low-Loss, Wideband Microwave Phase-Change Switch Below 1 K

  • P. Borodulin
  • N. El-Hinnawy
  • A. L. Graninger
  • M. R. King
  • C. R. Padilla
  • L. N. Upton
  • R. T. Hinkey
  • T. E. Schlesinger
  • A. A. Pesetski
  • M. E. Sherwin
  • R. M. YoungEmail author
Article
  • 20 Downloads

Abstract

We report on the design, fabrication, and demonstration of the operation of a latching (nonvolatile) low-loss microwave switch at 4.2 K and 40 mK using the phase-change material germanium telluride (GeTe) as the switching element. The single-pole double-throw (SPDT) series–shunt switch has a single RF input and two selectable RF outputs. An insertion loss of less than 1 dB from DC to 10 GHz was demonstrated, with virtually identical performance across 5000 switching cycles at 40 mK. We have also characterized the resistance of the GeTe thin-film material used in the fabrication of the SPDT switch from room temperature down to 11 mK. While bulk GeTe is known to become superconducting below 1 K, these GeTe films showed no detectable superconducting transition, resulting in a switch with finite on-state DC resistance. Given the wide range of phase-change material candidates reported in the literature and prior evidence of superconductivity, this demonstration paves the way for future development of a near-ideal switch which could have zero on-state DC resistance at cryogenic temperatures.

Keywords

Phase-change material Microwave switch Latching Nonvolatile Low loss GeTe 

Notes

Acknowledgements

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions, and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the US Government.

References

  1. 1.
    Jen-Hao Yeh, Steven M. Anlage, In situ broadband cryogenic calibration for two-port superconducting microwave resonators. Rev. Sci. Instrum. 84, 034706 (2013).  https://doi.org/10.1063/1.479746 ADSCrossRefGoogle Scholar
  2. 2.
    J.M. Hornibrook, J.I. Colless, I.D. Conway Lamb, S.J. Pauka, H. Lu, A.C. Gossard, J.D. Watson, G.C. Gardner, S. Fallahi, M.J. Manfra, D.J. Reilly, Cryogenic control architecture for large-scale quantum computing. Phys. Rev. Appl. (2015).  https://doi.org/10.1103/PhysRevApplied.3.024010 Google Scholar
  3. 3.
    E. Charbon, F. Sebastiano, A. Vladimirescu, H. Homulle, S Visser, L. Song, R. Incandela, Cryo-CMOS for quantum computing, 2016 IEEE International Electron Devices Meeting (IEDM).  https://doi.org/10.1109/iedm.2016.7838410
  4. 4.
    Harald Homulle, Stefan Visser, Bishnu Patra, Giorgio Ferrari, Enrico Prati, Fabio Sebastiano, Edoardo Charbon, A reconfigurable cryogenic platform for the classical control of quantum processors. Rev. Sci. Instrum. 88, 045103 (2017).  https://doi.org/10.1063/1.4979611 ADSCrossRefGoogle Scholar
  5. 5.
    O. Naaman, M.O. Abutaleb, C. Kirby, M. Rennie, On-chip Josephson junction microwave switch. Appl. Phys. Lett. 108, 112601 (2016).  https://doi.org/10.1063/1.4943602 ADSCrossRefGoogle Scholar
  6. 6.
    James G. Champlain, Laura B. Ruppalt, Andrew C. Guyette, Nabil El-Hinnawy, Pavel Borodulin, Evan Jones, Robert M. Young, Doyle Nichols, Examination of the temperature dependent electronic behavior of GeTe for switching applications. J. Appl. Phys. 119, 244501 (2016).  https://doi.org/10.1063/1.4954313 ADSCrossRefGoogle Scholar
  7. 7.
    Nabil El-Hinnawy, Pavel Borodulin, Matthew R. King, Carlos R. Padilla, Andris Ezis, Doyle T. Nichols, Jeyanandh Paramesh, James A. Bain, Robert M. Young, Origin and optimization of RF power handling limitations in chalcogenide-based inline phase-change switches. IEEE Trans. Electron Device 64(9), 3934–3942 (2017).  https://doi.org/10.1109/ted.2017.2730231 ADSCrossRefGoogle Scholar
  8. 8.
    P. Borodulin, N. El-Hinnawy, C.R. Padilla, A. Ezis, M. R. King, D. R. Johnson, D. T. Nichols, R. M. Young, Recent advances in fabrication and characterization of GeTe-based Phase-change RF Switches and MMICs, in Microwave Symposium (IMS), 2017 IEEE MTT-S International (4–9 June 2017) pp. 285–288.  https://doi.org/10.1109/mwsym.2017.8059098
  9. 9.
    Nabil El-Hinnawy, Pavel Borodulin, Brian P. Wagner, Matthew R. King, Evan B. Jones, Robert S. Howell, Michael J. Lee, Robert M. Young, Low-loss latching microwave switch using thermally pulsed non-volatile chalcogenide phase change materials. Appl. Phys. Lett. 105, 013501 (2014).  https://doi.org/10.1063/1.4885388 ADSCrossRefGoogle Scholar
  10. 10.
    R.M. Young, P. Borodulin, N. El-Hinnawy, A. Ezis, M.R. King, V. Luu, D.T. Nichols, Improvements in GeTe-based phase change RF switches, in Microwave Symposium (IMS), 2018 IEEE MTT-S International (10–15 June 2018)Google Scholar
  11. 11.
    R.M. Young, N. El-Hinnawy, P. Borodulin, B.P. Wagner, M.R. King, E.B. Jones, R.S. Howell, M.J. Lee, Thermal analysis of an indirectly heat pulsed non-volatile phase change material microwave switch. J. Appl. Phys. 116(5), 54504 (2014).  https://doi.org/10.1063/1.4891239 ADSCrossRefGoogle Scholar
  12. 12.
    J. Moon, H. Seo, K. Son, K. Lee, D. Zehnder, and H. Tai, 5 THz Figure-of-merit reliable phase-change RF switches for millimeter-wave applications, in Microwave Symposium (IMS), 2018 IEEE MTT-S International (10–15 June 2018)Google Scholar
  13. 13.
    W.J. Chappell, T.M. Hancock, and R.H. Olsson III, Can phase change materials put the radio into software defined radio?, in Microwave Symposium (IMS), 2018 IEEE MTT-S International (10–15 June 2018)Google Scholar
  14. 14.
    Taiquan Zhang, Yu. Yujin Wang, Guiming Song Zhou, High temperature electrical resistivities of ZrC particle–reinforced tungsten-matrix composites. Int. J. Refract. Metal Hard Mater. 28(4), 498–502 (2010).  https://doi.org/10.1016/j.ijrmhm.2010.02.007 CrossRefGoogle Scholar
  15. 15.
    P.D. Desai, T.K. Chu, H.M. James, C.Y. Ho, Electrical resistivity of selected elements. J. Phys. Chem. Ref. Data 13, 1069 (1984).  https://doi.org/10.1063/1.555723 ADSCrossRefGoogle Scholar
  16. 16.
    A.E. Lita, D. Rosenberg, S. Nam, A.J. Miller, D. Balzar, L.M. Kaatz, R.E. Schwall, Tuning of tungsten thin film superconducting transition temperature for fabrication of photon number resolving detectors. IEEE Trans. Appl. Supercond. 15(2), 3528–3531 (2005).  https://doi.org/10.1109/tasc.2005.849033 ADSCrossRefGoogle Scholar
  17. 17.
    B.W. Roberts, Survey of superconductive materials and critical evaluation of selected properties. J. Phys. Chem. Ref. Data 5, 581 (1976).  https://doi.org/10.1063/1.555540 ADSCrossRefGoogle Scholar
  18. 18.
    S. Ohya, B. Chiaro, A. Megrant, C. Neill, R. Barends, Y. Chen, J. Kelly, D. Low, J. Mutus, P.J.J. O’Malley, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T.C. White, Y. Yin, B.D. Schultz, C.J. Palmstrøm, B.A. Mazin, A.N. Cleland, J.M. Martinis, Room temperature deposition of sputtered TiN films for superconducting coplanar waveguide resonators. Supercond. Sci. Technol. 27, 015009 (2014).  https://doi.org/10.1088/09532048/27/1/015009 ADSCrossRefGoogle Scholar
  19. 19.
    Alan M. Kadin, Introduction to Superconducting Circuits, 1st edn. (Wiley, Hoboken, 1999), p. 80, 110, 164Google Scholar
  20. 20.
    L.J. van der Pauw, A method of measuring specific resistivity and hall effect of discs of arbitrary shape. Philips Res. Rep. 13, 1–9 (1958)Google Scholar
  21. 21.
    T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, M. Wuttig, Disorder-induced localization in crystalline phase-change materials. Nat. Mater. 10, 202–208 (2011).  https://doi.org/10.1038/nmat2934. Supplementary Information ADSCrossRefGoogle Scholar
  22. 22.
    S.K. Bahl, K.L. Chopra, Amorphous vs crystalline GeTe films. III electrical properties and band structure. J. Appl. Phys. 41(5), 2196–2212 (1974)ADSCrossRefGoogle Scholar
  23. 23.
    G. Slovin, Design and Fabrication of 4-Termianl RF Phase Change Switch, Doctoral Thesis (Carnegie Mellon University, Pittsburgh, 2015)Google Scholar
  24. 24.
    M.A. Korzhuev, L.I. Petrova, Low-temperature electroresistance and the Debye temperature of GeTe. Sov. Phys. Semicond. 15(3), 290 (1981)Google Scholar
  25. 25.
    L.E. ShelimovaO, G. KarpinskiiP, P. KonstantinovM, A. KretovaE, S. AvilovV, S. Zemskov, Composition and properties of layered compounds in the GeTe–Sb2Te3 system. Inorg. Mater. 37(4), 342–348 (2001)CrossRefGoogle Scholar
  26. 26.
    R.R. Helkes, R.C. Miller, R.W. Ure, Jr., in Thermoelectricity- Science and Engineering, R.C. Miller, Ed. (Interscience, NY, 1961) chap. 13Google Scholar
  27. 27.
    NKh Abrikosov, O.G. Karpinskii, L.E. Shelimova, M.A. Korzhuev, Izv. Akad. Nauk SSSR, Neorg. Mater. 13, 2160 (1977)Google Scholar
  28. 28.
    Rui Lan, Rie Endo, Masashi Kuwahara, Yoshinao Kobayashi, Masahiro Susa, Electrical and heat conduction mechanisms of GeTe alloy for phase change memory application. J. Appl. Phys. 112, 053712 (2012).  https://doi.org/10.1063/1.4751018 ADSCrossRefGoogle Scholar
  29. 29.
    R.A. Hein, J.W. Gibson, R. Mazelsky, R.C. Miller, J.K. Hulm, Superconductivity in germanium telluride. Phys. Rev. Lett. 12, 320 (1964).  https://doi.org/10.1103/PhysRevLett.12.320 ADSCrossRefGoogle Scholar
  30. 30.
    L. Finegold, Germanium telluride: specific heat and superconductivity. Phys. Rev. Lett. 13(7), 233 (1964)ADSCrossRefGoogle Scholar
  31. 31.
    S. Geller, G.W. Hull Jr., Superconductivity of intermetallic compounds with NaCl-type and related structures. Phys. Rev. Lett. 13, 127 (1964).  https://doi.org/10.1103/PhysRevLett.13.127 ADSCrossRefGoogle Scholar
  32. 32.
    M.R. King, Development of phase change materials for RF switch applications, North Carolina State University, Ph.D. Dissertation (2016)Google Scholar
  33. 33.
    J.K. Hulm, C.K. Jones, D.W. Deis, H.A. Fairbank, P.A. Lawless, Superconducting interactions in tin telluride. Phys. Rev. 169, 388 (1968).  https://doi.org/10.1103/PhysRev.169.388 ADSCrossRefGoogle Scholar
  34. 34.
    L. De La Cruz, A.G. Birdwell1, M. Zaghloul, Tony G. Ivanov, GeTe phase change research at the US army research laboratory, in Microwave Symposium (IMS), 2018 IEEE MTT-S International (10–15 June 2018)Google Scholar
  35. 35.
    Nabil El-Hinnawy, Development, optimization, and integration of inline phase-change switches for reconfigurable RF systems, Carnegie Mellon University, Ph.D. Dissertation (2018)Google Scholar
  36. 36.
    M. Hansen, K. Anderko, Constitution of Binary Alloys, 2nd edn. (Genium Publ. Comp, Schenectady, NY, 1985), pp. 776–777Google Scholar
  37. 37.
    Alan M. Kadin, Introduction to Superconducting Circuits, 1st edn. (Wiley, Hoboken, 1999), p. 251Google Scholar
  38. 38.
    G.M. Rebeiz, J.B. Muldavin, RF MEMS switches and switch circuits. Microw. Mag. 2(4), 59 (2001).  https://doi.org/10.1109/6668.969936 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • P. Borodulin
    • 1
    • 2
  • N. El-Hinnawy
    • 1
    • 3
    • 4
  • A. L. Graninger
    • 1
  • M. R. King
    • 1
    • 5
  • C. R. Padilla
    • 1
    • 6
  • L. N. Upton
    • 1
  • R. T. Hinkey
    • 1
  • T. E. Schlesinger
    • 2
  • A. A. Pesetski
    • 1
  • M. E. Sherwin
    • 1
  • R. M. Young
    • 1
    Email author
  1. 1.Northrop Grumman Mission Systems, Advanced Technology LaboratoryLinthicumUSA
  2. 2.Johns Hopkins UniversityBaltimoreUSA
  3. 3.Carnegie Mellon UniversityPittsburghUSA
  4. 4.TowerJazzNewport BeachUSA
  5. 5.WolfspeedDurhamUSA
  6. 6.Akoustis TechnologiesCanandaiguaUSA

Personalised recommendations