Journal of Low Temperature Physics

, Volume 194, Issue 3–4, pp 224–234 | Cite as

Spin–Flip Relaxation Between the Landau Levels in Gapped Graphene

  • Wei-Ping Li
  • Ji-Wen Yin
  • Zi-Wu WangEmail author


Within the frame of the Huang–Rhys’s lattice relaxation model, we theoretically investigate the spin–flip relaxation assisted by two-phonon processes between the zeroth and first-excited Landau level in gapped graphene on different polar substrates. We give the comparisons between the spin-conserving and the spin–flip of two-phonon processes, which are composed of the surface-optical phonons and longitudinal acoustic phonons. The dependences of two-phonon processes on the energy separation, temperature and polarizability of substrates are discussed. Moreover, we find that the relaxation time of spin–flip can be tuned on a large scale by adjusting the Rashba spin–orbital coupling and internal distance between the graphene and the polar substrate.


Graphene Two-phonon processes Spin–flip relaxation 



This work was supported by National Natural Science Foundation of China (No. 11674241).


  1. 1.
    P. Recher, B. Trauzettel, Nanotechnology 21, 302001 (2010)CrossRefGoogle Scholar
  2. 2.
    M. Droth, G. Burkard, Phys. Status Solidi RRL 10, 75 (2016)CrossRefGoogle Scholar
  3. 3.
    W. Han, K.M. McCreary, K. Pi, W.H. Wang, Y. Li, H. Wen, J.R. Chen, R.K. Kawakami, J. Magn. Magn. Mater. 324, 369 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    D.H. Hernando, F. Guinea, A. Brataas, Phys. Rev. Lett. 103, 146801 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    P.R. Struck, G. Burkard, Phys. Rev. B 82, 125401 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    M. Droth, G. Burkard, Phys. Rev. B 84, 155404 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    M.B. Lundeberg, R. Yang, J. Renard, J.A. Folk, Phys. Rev. Lett. 110, 156601 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    M. Droth, G. Burkard, Phys. Rev. B 87, 205432 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    M. Fuchs, J. Schliemann, B. Trauzettel, Phys. Rev. B 88, 245441 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    M.O. Hachiya, G. Burkard, J.C. Egues, Phys. Rev. B 89, 115427 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    A. Konar, T. Fang, D. Jena, Phys. Rev. B 82, 115452 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    I.T. Lin, J.M. Liu, Appl. Phys. Lett. 103, 081606 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    S.Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W.A. De Heer, D.-H. Lee, F. Guinea, A.H.C. Neto, A. Lanzara, Nat. Mater. 6, 770 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    M.O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    J.L. Lado, J.W. Gonzalez, J.F. Rossier, Phys. Rev. B 88, 035448 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    K. Kaasbjerg, K.S. Thygesen, K.W. Jacobsen, Phys. Rev. B 85, 115317 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    K. Kaasbjerg, K.S. Bhargavi, S.S. Kubakaddi, Phys. Rev. B 90, 165436 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    K. Huang, A. Rhys, Proc. R. Soc. Ser. A 204, 406 (1950)ADSGoogle Scholar
  19. 19.
    K. Huang, Sci. Sin. 24, 27 (1981)Google Scholar
  20. 20.
    K. Huang, Prog. Phys. 1, 31 (1981). (in chinese) Google Scholar
  21. 21.
    F. Wendler, A. Knorr, E. Malic, Appl. Phys. Lett. 103, 253117 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Z.W. Wang, L. Liu, L. Shi, X.J. Gong, W.P. Li, K. Xu, J. Phys. Soc. Jpn. 82, 094606 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Z.W. Wang, Z.Q. Li, S.S. Li, J. Phys, Condens. Matter 26, 395302 (2014)CrossRefGoogle Scholar
  24. 24.
    W.P. Li, J.W. Yin, Y.F. Yu, Z.W. Wang, Solid State Commun. 163, 19 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Z.W. Wang, L. Liu, Z.Q. Li, Europhys. Lett. 108, 36005 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    F. Wendler, M. Mittendorff, J.C. König-Otto, S. Brem, C. Berger, W.A. de Heer, R. Böttger, H. Schneider, M.H.S. Winner, E. Malic, Phys. Rev. Lett. 119, 067405 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Mod. Rev. Phys. 79, 1217 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Basic CoursesTianjin Sino-German University of Applied SciencesTianjinPeople’s Republic of China
  2. 2.Department of Physics and Electronic Informational EngineeringChifeng UniversityChifeng Inner MongoliaPeople’s Republic of China
  3. 3.Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of PhysicsTianjin UniversityTianjinChina

Personalised recommendations