Advertisement

Journal of Low Temperature Physics

, Volume 194, Issue 1–2, pp 88–98 | Cite as

The Effects of Free Vortex Decay in Quasi-Classical and Ultra-Quantum Turbulence

  • A. MitraEmail author
Article
  • 39 Downloads

Abstract

Free decay of homogeneous vortex tangle in superfluid has been studied for ultra-quantum and quasi-classical regimes at zero temperature limit. It is found that the decay process is associated with heating by means of phonon generation into the system, even at such a zero temperature limit. An explicit expression for the time evolution of temperature due to the heating has been derived. Such heating affects the motion of vortex strings by (a) decreasing their cyclotron frequencies and (b) shortening their length. This length shortening is a secondary decay process initiated by the primary free decay of vortex tangles. The effect of quasiparticles (phonons) on the wave collapse and energy dissipation of the turbulent states has also been studied through the modulation theory.

Keywords

Superfluid Quantum turbulence Heating Cyclotron motion Wave collapse 

Notes

Acknowledgements

I am indebted to Prof. Rajkumar Roychoudhury, Prof. Manoranjan Khan and Dr. Ashish Adak for many useful discussions regarding this work and to the SERB, Government of India (under Ref. No. EMR/16/004746), for the financial support.

References

  1. 1.
    J. Maurer, P. Tabeling, EPL 43, 1 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    W.F. Vinen, Phys. Rev. B 61, 1410 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    D. Kivotides, J.C. Vassilicos, D.C. Samuels, C.F. Barenghi, Phys. Rev. Lett. 86, 14 (2001)CrossRefGoogle Scholar
  4. 4.
    A.P. Finne et al., Nature 438, 1022–1025 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    E. Kozik, B. Svistunov, Phys. Rev. Lett. 92, 3 (2004)CrossRefGoogle Scholar
  6. 6.
    M. Kobayashi, M. Tsubota, Phys. Rev. Lett. 94, 065302 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    D. Kivotides, Phys. Fluids 26, 105105 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    S.K. Nemirovskii, Phys. Rep. 524, 85–202 (2013)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    L. Skrbek, K.R. Sreenivasan, Phys. Fluids 24, 011301 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    M. Kobayashi, M. Tsubota, J. Low Temp. Phys. 145, 209–218 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    W.F. Vinen, Phys. Rev. Lett. 91, 13 (2003)CrossRefGoogle Scholar
  12. 12.
    E. Kozik, B. Svistunov, Phys. Rev. B 77, 060502(R) (2008)ADSCrossRefGoogle Scholar
  13. 13.
    L. Boue, Phys. Rev. B 84, 064516 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    J. Salort, B. Chabaud, E. Lévêque, P.E. Roche, EPL 97(3), 34006 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    A. Marakov, Phys. Rev. B 91, 094503 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    S. Babuin, Phys. Rev. B 94, 174504 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    J. Gao, JETP Lett. 103, 10 (2016)CrossRefGoogle Scholar
  18. 18.
    D.C. Samuels, C.F. Barenghi, Phys. Rev. Lett. 81, 20 (1998)CrossRefGoogle Scholar
  19. 19.
    K.W. Schwarz, Phys. Rev. B 38, 2398 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    H. Adachi, S. Fujiyama, M. Tsubota, Phys. Rev. B 81, 104511 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    T.F. Buttke, J. Comput. Phys. 76(2), 301–326 (1988)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    R.A. Van Gordera, Phys. Fluids 25, 085101 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    P.M. Walmsley, A.I. Golov, Phys. Rev. Lett. 100, 24530 (2008)CrossRefGoogle Scholar
  24. 24.
    C.F. Barenghi, D.C. Samuels, G.H. Bauer, R.J. Donnelly, Phys. Fluids 9, 2631 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    D.H. Wacks, C.F. Barenghi, Phys. Rev. B 84, 184505 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    W.F. Vinen, Proc. R. Soc. Lond. Ser. A 240, 114 (1957)ADSCrossRefGoogle Scholar
  27. 27.
    D. Jou, M.S. Mongiovì, Phys. Lett. A 359, 183–186 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    M.S. Mongiovì, D. Jou, M. Sciacca, Phys. Rev. B 75, 214514 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    E. Demircan, P. Ao, Q. Niu, Phys. Rev. B 54, 14 (1996)CrossRefGoogle Scholar
  30. 30.
    J.M. Duan, Phys. Rev. B 49, 17 (1984)Google Scholar
  31. 31.
    N.B. Kopnin, V.M. Vinokur, Phys. Rev. Lett. 81, 18 (1998)CrossRefGoogle Scholar
  32. 32.
    D.P. Arovas, J.A. Freire, Phys. Rev. B 55, 2 (1997)CrossRefGoogle Scholar
  33. 33.
    J.H. Mark, S. Ku, Phys. Rev. Lett. 113, 065301 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    C.M. Muirhead, W.F. Vinen, R.J. Donnelly, Philos. Trans. R. Soc. Lond. A 311, 1518 (1984)CrossRefGoogle Scholar
  35. 35.
    I.M. Khalatnikov, An Introduction to the Theory of Superfluidity (Benjamin, New York, 1965)Google Scholar
  36. 36.
    R.W. Whitworth, Proc. R. Soc. Lond. Ser. A 246, 1246 (1958)Google Scholar
  37. 37.
    E. Demircan, P. Ao, Q. Niu, Phys. Rev. B 54, 14 (1996)CrossRefGoogle Scholar
  38. 38.
    H. Hasimoto, J. Fluid Mech. 22, 471 (1972)Google Scholar
  39. 39.
    C.I. Epstein, M. Gage, Wave Motion: Theory, Modelling, and Computation (Springer, Berlin, 1987), pp. 15–59CrossRefGoogle Scholar
  40. 40.
    J.J. Rasmussen, K. Rypdal, Phys. Scr. 33, 6 (1986)CrossRefGoogle Scholar
  41. 41.
    G. Fibich, G. Papanicolaou, SIAM J. Appl. Math. 60, 183–240 (1999)CrossRefGoogle Scholar
  42. 42.
    F. Merle, P. Raphael, Ann. Math. 161, 157–222 (2005)MathSciNetCrossRefGoogle Scholar
  43. 43.
    S.I. Davis, P.C. Hendry, P.V.E. McClintock, Phys. B 280, 43–44 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    P.C. Hendry, Nature (Lond.) 368, 315 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Instrumentation Science, Center for Plasma StudiesJadavpur UniversityKolkataIndia

Personalised recommendations