Advertisement

Impact of Nano-Sized Diluted Magnetic Semiconductors Addition on (Cu,Tl)1234 Superconducting Phase

  • M. Anas
  • Ghada A. El-Shorbagy
Article
  • 20 Downloads

Abstract

The effect of Zn0.95Ni0.05O nanoparticles addition on the superconducting properties of (Cu0.25Tl0.75)Ba2Ca3Cu4O12−δ superconducting phase was studied. Superconducting samples of type (Zn0.95Ni0.05O)x(Cu0.25Tl0.75)Ba2Ca3Cu4O12−δ, x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 wt%, were prepared via a single step of solid-state reaction technique at 850 °C under ambient pressure. X-ray powder diffraction, scanning electron microscope, and energy dispersive X-ray were used for samples characterization. The superconducting properties were investigated using the electrical resistivity and DC magnetization measurements. The results showed that the addition of nano-Zn0.95Ni0.05O up to x = 0.6 wt% enhanced the phase formation and improved the superconducting transition temperature Tc in contrary for x > 0.6 wt%, Tc was decreased as x increased. Low field magnetization measurement, H = 20 Gauss, was conducted to the samples to determine the magnetic superconducting transition temperature Tc-mag. Both Tc and Tc-mag were found to have the same behavior with increasing x, whereas the values of Tc-mag were slightly lower than that for Tc values.

Keywords

Diluted magnetic semiconductors (DMS) (Cu,Tl)-1234 Superconductor DC magnetization 

Notes

Acknowledgements

The authors wish to express their thanks to the Superconductivity and Metallic—Glass Lab, Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt, for aiding with the experimental procedures. Special thanks to prof. M. M. Elokr due to preparation of nano-Zn0.95Ni0.05O.

References

  1. 1.
    A. Iyo, Y. Tanaka, Y. Ishiura, M. Tokumoto, K. Tokiwa, T. Watanabe, H. Ihara, Supercond. Sci. Technol. 14, 504–510 (2001).  https://doi.org/10.1088/0953-2048/14/7/313 ADSCrossRefGoogle Scholar
  2. 2.
    A.A. Khurram, N.A. Khan, M. Mumtaz, Phys. C 469, 279–282 (2009).  https://doi.org/10.1016/j.physc.2009.02.008 ADSCrossRefGoogle Scholar
  3. 3.
    N.A. Khan, Y. Sekita, H. Ihara, Supercond. Sci. Technol. 15, 613–616 (2002).  https://doi.org/10.1088/0953-2048/15/4/322 ADSCrossRefGoogle Scholar
  4. 4.
    S.M. Hasnain, M. Mumtaz, N.A. Khan, J. Supercond. Nov. Magn. 24, 1653–1657 (2011).  https://doi.org/10.1007/s10948-010-1073-5 CrossRefGoogle Scholar
  5. 5.
    N.A. Khan, A.A. Khurram, A. Javed, Phys. C 422, 9–15 (2005).  https://doi.org/10.1016/j.physc.2005.02.013 ADSCrossRefGoogle Scholar
  6. 6.
    H. Ihara, K. Tokiwa, K. Tanaka, T. Tsukamoto, T. Watanabe, H. Yamamoto, A. Iyo, M. Tokumoto, M. Umeda, Phys. C 282–287, 957–958 (1997).  https://doi.org/10.1016/S0921-4534(97)00592-3 ADSCrossRefGoogle Scholar
  7. 7.
    H. Ihara, K. Tokiwa, H. Ozawa, M. Hirabayashi, A. Negishi, H. Matuhata, Y.S. Song, Jpn. J. Appl. Phys. 33, L503 (1994).  https://doi.org/10.1143/JJAP.33.L503 ADSCrossRefGoogle Scholar
  8. 8.
    A. Iyo, K. Tokiwa, N. Terada, M. Tokumoto, M. Hirabayashi, H. Ihara, Adv. Supercond. 8, 289–292 (1996).  https://doi.org/10.1007/978-4-431-66871-8_61 CrossRefGoogle Scholar
  9. 9.
    H. Ihara, K. Tanaka, Y. Tanaka, A. Iyo, N. Terada, M. Tokumoto, M. Ariyama, I. Hase, A. Sundaresan, N. Hamada, S. Miyashita, K. Tokiwa, T. Watanabe, Phys. C 341–348, 487–488 (2000).  https://doi.org/10.1016/S0921-4534(00)00555-4 ADSCrossRefGoogle Scholar
  10. 10.
    N.A. Khan, Y. Sekita, N. Terada, H. Ihara, Supercond. Sci. Technol. 14, 603–606 (2001).  https://doi.org/10.1088/0953-2048/14/8/315 ADSCrossRefGoogle Scholar
  11. 11.
    P. Badica, A. Iyo, A. Crisan, H. Ihara, Supercond. Sci. Technol. 15, 975–982 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    N.H. Mohammed, M. Roumié, R. Awad, D. El-Said Bakeer, B. Nsouli, J. Supercond. Nov. Magn. 23, 465–474 (2010).  https://doi.org/10.1007/s10948-009-0599-x CrossRefGoogle Scholar
  13. 13.
    I.E. Agranovski, A.Y. Ilyushechkin, I.S. Altman, T.E. Bostrom, M. Choi, Phys. C 434, 115–120 (2006).  https://doi.org/10.1016/j.physc.2005.12.005 ADSCrossRefGoogle Scholar
  14. 14.
    Z.Y. Jia, H. Tang, Z.Q. Yang, Y.T. Xing, Y.Z. Wang, G.W. Qiao, Phys. C 337, 130–132 (2000).  https://doi.org/10.1016/S0921-4534(00)00072-1 ADSCrossRefGoogle Scholar
  15. 15.
    M. Annabi, A. M’chirgui, F. Ben Azzouz, M. Zouaoui, M. Ben Salem, Phys. C 405, 25–33 (2004).  https://doi.org/10.1016/j.physc.2004.01.012 ADSCrossRefGoogle Scholar
  16. 16.
    R. Awad, J. Supercond. Nov. Magn. 21, 461–466 (2008).  https://doi.org/10.1007/s10948-008-0385-1 CrossRefGoogle Scholar
  17. 17.
    N.H. Mohammed, J. Supercond. Nov. Magn. 25, 45–53 (2012).  https://doi.org/10.1007/s10948-011-1207-4 CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma, Science 291, 854–856 (2001).  https://doi.org/10.1126/science.1056186 ADSCrossRefGoogle Scholar
  20. 20.
    P.V. Radovanovic, D.R. Gamelin, Phys. Rev. Lett. 91, 1572021–1–1572021-4 (2003).  https://doi.org/10.1103/PhysRevLett.91.157202 CrossRefGoogle Scholar
  21. 21.
    G. Pei, C. Xia, S. Cao, J. Zhang, W. Feng, X. Jun, J. Magn. Magn. Mater. 302, 340–342 (2006).  https://doi.org/10.1016/j.jmmm.2005.09.029 ADSCrossRefGoogle Scholar
  22. 22.
    C.J. Cong, J.H. Hong, Q.Y. Liu, L. Liao, K.L. Zhang, Solid State Commun. 138, 511–515 (2006).  https://doi.org/10.1016/j.ssc.2006.04.020 ADSCrossRefGoogle Scholar
  23. 23.
    S. Thota, T. Dutta, J. Kumar, J. Phys. Condens. Matter 18, 2473–2486 (2006).  https://doi.org/10.1088/0953-8984/18/8/012 ADSCrossRefGoogle Scholar
  24. 24.
    B.B. Li, X.Q. Xiu, R. Zhang, Z.K. Tao, L. Chen, Z.L. Xie, Y.D. Zheng, Z. Xie, Mater. Sci. Semicond. Process. 9, 141–145 (2006).  https://doi.org/10.1016/j.mssp.2006.01.074 CrossRefGoogle Scholar
  25. 25.
    Z.X. Cheng, X.L. Wang, S.X. Dou, K. Ozawa, H. Kimura, P. Munroe, J. Phys. D Appl. Phys. 40, 6518–6521 (2007).  https://doi.org/10.1088/0022-3727/40/21/008 ADSCrossRefGoogle Scholar
  26. 26.
    X.L. Zhang, R. Qiao, Y. Li, R. Qiu, Y.S. Kang, Materials Research Society Symposium Proceedings (2007), p. 957.  https://doi.org/10.1557/PROC-0957-K10-24
  27. 27.
    M. El-Hilo, A.A. Dakhel, A.Y. Ali-Mohamed, J. Magn. Magn. Mater. 321, 2279–2283 (2009).  https://doi.org/10.1016/j.jmmm.2009.01.040 ADSCrossRefGoogle Scholar
  28. 28.
    W. Lojkowski, A. Gedanken, E. Grzanka, A. Opalinska, T. Strachowski, R. Pielaszek, A. Tomaszewska-Grzeda, S. Yatsunenko, M. Godlewski, H. Matysiak, K.J. Kurzydłowski, J. Nanopart. Res. 11, 1991–2002 (2009).  https://doi.org/10.1007/s11051-008-9559-9 ADSCrossRefGoogle Scholar
  29. 29.
    T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, T. Ito, Phys. E Low-Dimens. Syst. Nanostruct. 10, 260–264 (2001).  https://doi.org/10.1016/S1386-9477(01)00095-9 ADSCrossRefGoogle Scholar
  30. 30.
    M. Annabi, I. Bouchoucha, F. Ben Azzouz, M. Ben Salem, in IOP Conference Series: Materials Science and Engineering, vol. 13 (2010), p. 012009.  https://doi.org/10.1088/1757-899x/13/1/012009 CrossRefGoogle Scholar
  31. 31.
    I. Bouchoucha, F. Ben Azzouz, M. Annabi, M. Zouaoui, M. Ben Salem, Phys. C 470, 262–268 (2010).  https://doi.org/10.1016/j.physc.2009.11.034 ADSCrossRefGoogle Scholar
  32. 32.
    B.A. Albiss, I.M. Obaidat, M. Gharaibeh, H. Ghamlouche, S.M. Obeidat, Solid State Commun. 150, 1542–1547 (2010).  https://doi.org/10.1016/j.ssc.2010.06.001 ADSCrossRefGoogle Scholar
  33. 33.
    Y.F. Zhang, M. Izumi, Y.J. Li, M. Murakami, T. Gao, Y.S. Liu, P.L. Li, Phys. C 471, 840–842 (2011).  https://doi.org/10.1016/j.physc.2011.05.069 ADSCrossRefGoogle Scholar
  34. 34.
    I. Karaca, S. Çelebi, A. Varilci, A.I. Malik, Supercond. Sci. Technol. 16, 100 (2003).  https://doi.org/10.1088/0953-2048/16/1/318 ADSCrossRefGoogle Scholar
  35. 35.
    A. Ghattas, M. Annabi, M. Zouaoui, F. Ben Azzouz, M. Ben Salem, Phys. C 468, 31–38 (2008).  https://doi.org/10.1016/j.physc.2007.10.006 ADSCrossRefGoogle Scholar
  36. 36.
    N.A. Khan, A. Saleem, S.T. Hussain, J. Supercond. Nov. Magn. 25, 1725–1733 (2012).  https://doi.org/10.1007/s10948-012-1512-6 CrossRefGoogle Scholar
  37. 37.
    W. Kong, R. Abd-Shukor, J. Supercond. Nov. Magn. 23, 257–263 (2010).  https://doi.org/10.1007/s10948-009-0524-3 CrossRefGoogle Scholar
  38. 38.
    A.I. Abou-Aly, M.M.H. Abdel Gawad, R. Awad, I.G. Eldeen, J. Supercond. Nov. Magn. 24, 2077–2084 (2011).  https://doi.org/10.1007/s10948-011-1171-z CrossRefGoogle Scholar
  39. 39.
    A.I. Abou Aly, N.H. Mohammed, R. Awad, D. El-Said Bakeer, J. Supercond. Nov. Magn. 26, 2419–2428 (2013).  https://doi.org/10.1007/s10948-012-1825-5 CrossRefGoogle Scholar
  40. 40.
    E. Guilmeau, B. Andrzejewski, J.G. Noudem, Phys. C 387, 382–390 (2003).  https://doi.org/10.1016/S0921-4534(02)02360-2 ADSCrossRefGoogle Scholar
  41. 41.
    J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. Gu, Y. Zhang, Mater. Res. Bull. 46, 1207–1210 (2011).  https://doi.org/10.1016/j.materresbull.2011.04.008 CrossRefGoogle Scholar
  42. 42.
    D. Paul Joseph, S. Ayyappan, C. Venkateswaran, J. Alloys Compd. 415, 225–228 (2006).  https://doi.org/10.1016/j.jallcom.2005.04.218 CrossRefGoogle Scholar
  43. 43.
    P.W. Anderson, Phys. Rev. Lett. 67, 2092 (1991).  https://doi.org/10.1103/PhysRevLett.67.2092 ADSCrossRefGoogle Scholar
  44. 44.
    A.I. Abou-Aly, R. Awad, M. Kamal, M. Anas, J. Low Temp. Phys. 163, 184–202 (2011).  https://doi.org/10.1007/s10909-010-0339-4 ADSCrossRefGoogle Scholar
  45. 45.
    H. Salamati, P. Kameli, Solid State Commun. 125, 407–411 (2003).  https://doi.org/10.1016/S0038-1098(02)00809-8 ADSCrossRefGoogle Scholar
  46. 46.
    E. Brecht, W.W. Schmahl, G. Miehe, M. Rodewald, H. Fuess, N.H. Andersen, J. Hanßmann, T. Wolf, Phys. C 265, 53–66 (1996).  https://doi.org/10.1016/0921-4534(96)00255-9 ADSCrossRefGoogle Scholar
  47. 47.
    A. Mellekh, M. Zouaoui, F. Ben Azzouz, M. Annabi, M. Ben Salem, Solid State Commun. 140, 318–323 (2006).  https://doi.org/10.1016/j.ssc.2006.08.008 ADSCrossRefGoogle Scholar
  48. 48.
    J. Zhang, F. Liu, G. Cheng, J. Shang, J. Liu, S. Cao, Z. Liu, Phys. Lett. A 201, 70–76 (1995).  https://doi.org/10.1016/0375-9601(95)00237-W ADSCrossRefGoogle Scholar
  49. 49.
    H.K. Barik, S.K. Ghorai, S. Bhattacharya, D. Kilian, B.K. Chaudhuri, J. Mater. Res. 15, 1076–1082 (2000).  https://doi.org/10.1557/JMR.2000.0155 ADSCrossRefGoogle Scholar
  50. 50.
    H. Kojima, J. Yamamoto, Y. Mori, M.K.R. Khan, H. Tanabe, I. Tanaka, Phys. C 293, 14–19 (1997).  https://doi.org/10.1016/S0921-4534(97)01500-1 ADSCrossRefGoogle Scholar
  51. 51.
    A.G. Joshi, C.G.S. Pillai, P. Raj, S.K. Malik, Solid State Commun. 118, 445–448 (2001).  https://doi.org/10.1016/S0038-1098(01)00149-1 ADSCrossRefGoogle Scholar
  52. 52.
    H. Kishan, V.P.S. Awana, T.M. de Oliveira, S. Alam, M. Saito, O.F. de Lima, Phys. C 458, 1–5 (2007).  https://doi.org/10.1016/j.physc.2007.02.014 ADSCrossRefGoogle Scholar
  53. 53.
    M. Irfan, N.A. Khan, Int. J. Mod. Phys. B 25, 3853–3861 (2011).  https://doi.org/10.1142/S0217979211101491 ADSCrossRefGoogle Scholar
  54. 54.
    Y. Zhao, M. Ionescu, J. Horvat, A.H. Li, S.X. Dou, Supercond. Sci. Technol. 17, 1247–1252 (2004).  https://doi.org/10.1088/0953-2048/17/11/004 ADSCrossRefGoogle Scholar
  55. 55.
    E. Taylan Koparan, A. Surdu, A. Awawdeh, A. Sidorenko, E. Yanmaz, J. Supercond. Nov. Magn. 25, 1761–1767 (2012).  https://doi.org/10.1007/s10948-012-1533-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  2. 2.Physics Department, Faculty of ScienceDamanhour UniversityDamanhourEgypt

Personalised recommendations