Advertisement

Microfabrication Developments for Future Instruments Using KID Detectors

  • J. Goupy
  • A. Benoit
  • A. Bideaud
  • O. Bourrion
  • M. Calvo
  • A. Catalano
  • E. F. C. Driessen
  • A. Gomez
  • S. Leclercq
  • F. Levy-Bertrand
  • J. F. Macias-Perez
  • A. Monfardini
  • K. F. Schuster
Article
  • 2 Downloads

Abstract

The NIKA2 instrument, operating at the IRAM 30-m telescope, demonstrates that the aluminum LEKID technology is a state-of-the-art solution for detectors dedicated to millimeter-wave astronomy. Following this path, several instrumental projects envisage today the use of LEKID technology. To cover the full 60–600 GHz band, relevant for CMB-oriented experiments, we are exploring new materials and solutions and we present our latest results. We present a new technology from NIKA2 developments to address the band 450–650 GHz. And we expose our first developments of the trilayer Al/Ti/Al technology following our work for low frequencies (60–80 GHz).

Keywords

Kinetic inductance detectors Millimeter wavelength Array 

Notes

Acknowledgements

This work has been performed at the “Plateforme Technologique Amont” (PTA) of Grenoble, with the financial support of the FOCUS Labex, the CNES and the ANR. We acknowledge the support of the cryogenics and electronics groups of the Institute NEEL and the LPSC.

References

  1. 1.
    P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas, Nature 425, 817 (2003).  https://doi.org/10.1038/nature02037 ADSCrossRefGoogle Scholar
  2. 2.
    J. Zmuidzinas, Annu. Rev. Condens. Matter Phys. 3, 169 (2012).  https://doi.org/10.1146/annurev-conmatphys-020911-125022 CrossRefGoogle Scholar
  3. 3.
    S. Doyle, J. Naylon, P. Mauskopf et al., in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7020 (2008).  https://doi.org/10.1117/12.788941
  4. 4.
    M. Calvo et al., JLTP 184(3–4), 816–823 (2016).  https://doi.org/10.1007/s10909-016-1582-0 ADSCrossRefGoogle Scholar
  5. 5.
    A. Catalano et al., The NIKA2 commissioning campaign: performance and first results (2016), arXiv:1605.08628
  6. 6.
    arXiv:1707.00908, accepted for publication in A&A
  7. 7.
    J. Goupy et al., JLTP 184(3–4), 661–667 (2016).  https://doi.org/10.1007/s10909-016-1531-y ADSCrossRefGoogle Scholar
  8. 8.
    M. Roesch et al., arXiv:1212.4585
  9. 9.
    A. Catalano, J. Goupy, H. Le Sueur et al., A&A 580, A15 (2015).  https://doi.org/10.1051/0004-6361/201526206 ADSCrossRefGoogle Scholar
  10. 10.
    A. Catalano et al., A&A, 592, id. A26, 7 (2016).  https://doi.org/10.1051/0004-6361/201527715 ADSCrossRefGoogle Scholar
  11. 11.
    A. Monfardini et al., in Proceedings of the SPIE, vol. 9914 (2016), id. 99140N 8.  https://doi.org/10.1117/12.2231758

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • J. Goupy
    • 1
  • A. Benoit
    • 1
  • A. Bideaud
    • 1
  • O. Bourrion
    • 2
  • M. Calvo
    • 1
  • A. Catalano
    • 1
    • 2
  • E. F. C. Driessen
    • 3
  • A. Gomez
    • 4
  • S. Leclercq
    • 3
  • F. Levy-Bertrand
    • 1
  • J. F. Macias-Perez
    • 2
  • A. Monfardini
    • 1
    • 2
  • K. F. Schuster
    • 3
  1. 1.Institut Néel & Université Grenoble Alpes, CNRSGrenobleFrance
  2. 2.LPSC, Université Grenoble-Alpes, CNRS/IN2P3GrenobleFrance
  3. 3.Institut de Radio Astronomie Millimétrique (IRAM)GrenobleFrance
  4. 4.Centro de AstrobiologiaMadridSpain

Personalised recommendations