Advertisement

Low-Temperature Heat Capacity of \(\hbox {Sr}_2\hbox {Ca}_{12}\hbox {Cu}_{24}\hbox {O}_{41}\)

  • S. Sahling
  • J. E. Lorenzo
  • G. Remenyi
  • V. L. Katkov
Article
  • 5 Downloads

Abstract

We report on heat capacity measurements performed on a large \(\hbox {Sr}_{2}\hbox {Ca}_{12}\hbox {Cu}_{24}\hbox {O}_{41}\) single crystal in the temperature range between 0.07 and 20 K and magnetic fields up to 10 T. A transition into the antiferromagnetic ground state is observed at \(T_N = 2.8\) K. The heat capacity becomes strongly time-dependent below 0.5 K due to a Schottky contribution typical for materials with charge or spin-density waves. We found a quasi-linear contribution to the heat capacity that can be attributed to weakly coupled and shifted antiferromagnetic spin chains along the a-direction.

Keywords

Heat capacity Low temperature Spin chains Schottky contribution Transition into the antiferromagnetic ground state 

Notes

Acknowledgements

We acknowledge the support of the European Community Research Infrastructures under the FP7 Capacities Specific Program, MicroKelvin Project No. 228464, and LandauHeisenberg Program No. HLP-2018-26.

References

  1. 1.
    T. Vuletić, B. Korin-Hamzić, T. Ivek, S. Tomić, B. Gorshunov, M. Dressel, J. Akimitsu, Phys. Rep. 428(4), 169 (2006).  https://doi.org/10.1016/j.physrep.2006.01.005. http://www.sciencedirect.com/science/article/pii/S0370157306000342 ADSCrossRefGoogle Scholar
  2. 2.
    T. Wu, H. Mayaffre, S. Krmer, M. Horvati, C. Berthier, W.N. Hardy, R. Liang, D.A. Bonn, M.H. Julien, Nat. Commun. 6, 6438 (2015).  https://doi.org/10.1038/ncomms7438 ADSCrossRefGoogle Scholar
  3. 3.
    R. Comin, A. Damascelli, Ann. Rev. Condens. Matter Phys. 7(1), 369 (2016).  https://doi.org/10.1146/annurev-conmatphys-031115-011401 ADSCrossRefGoogle Scholar
  4. 4.
    T. Osafune, N. Motoyama, H. Eisaki, S. Uchida, Phys. Rev. Lett. 78, 1980 (1997).  https://doi.org/10.1103/PhysRevLett.78.1980 ADSCrossRefGoogle Scholar
  5. 5.
    N. Nücker, M. Merz, C.A. Kuntscher, S. Gerhold, S. Schuppler, R. Neudert, M.S. Golden, J. Fink, D. Schild, S. Stadler, V. Chakarian, J. Freeland, Y.U. Idzerda, K. Conder, M. Uehara, T. Nagata, J. Goto, J. Akimitsu, N. Motoyama, H. Eisaki, S. Uchida, U. Ammerahl, A. Revcolevschi, Phys. Rev. B 62, 14384 (2000).  https://doi.org/10.1103/PhysRevB.62.14384 ADSCrossRefGoogle Scholar
  6. 6.
    T. Vuletić, T. Ivek, B. Korin-Hamzić, S. Tomić, B. Gorshunov, P. Haas, M. Dressel, J. Akimitsu, T. Sasaki, T. Nagata, Phys. Rev. B 71, 012508 (2005).  https://doi.org/10.1103/PhysRevB.71.012508 ADSCrossRefGoogle Scholar
  7. 7.
    A. Gellé, M.B. Lepetit, Phys. Rev. Lett. 92, 236402 (2004).  https://doi.org/10.1103/PhysRevLett.92.236402 ADSCrossRefGoogle Scholar
  8. 8.
    A. Gellé, M.B. Lepetit, Phys. Rev. B 74, 235115 (2006).  https://doi.org/10.1103/PhysRevB.74.235115 ADSCrossRefGoogle Scholar
  9. 9.
    S. Sahling, G. Remenyi, C. Paulsen, P. Monceau, V. Saligrama, C. Marin, A. Revcolevschi, L.P. Regnault, S. Raymond, J.E. Lorenzo, Nat. Phys. 11, 255 (2015).  https://doi.org/10.1038/nphys3186 CrossRefGoogle Scholar
  10. 10.
    S. Sahling, G. Remenyi, J.E. Lorenzo, P. Monceau, V.L. Katkov, V.A. Osipov, Phys. Rev. B 94, 144107 (2016).  https://doi.org/10.1103/PhysRevB.94.144107 ADSCrossRefGoogle Scholar
  11. 11.
    J.E. Lorenzo et al., (to be published) Google Scholar
  12. 12.
    S. Vanishri, C. Marin, H. Bhat, B. Salce, D. Braithwaite, L. Regnault, J. Cryst. Growth 311(15), 3830 (2009).  https://doi.org/10.1016/j.jcrysgro.2009.06.043. http://www.sciencedirect.com/science/article/pii/S0022024809006265 ADSCrossRefGoogle Scholar
  13. 13.
  14. 14.
    T. Nagata, H. Fujino, J. Akimitsu, M. Nishi, K. Kakurai, S. Katano, M. Hiroi, M. Sera, N. Kobayashi, J. Phys. Soc. Jpn. 68(7), 2206 (1999).  https://doi.org/10.1143/JPSJ.68.2206 ADSCrossRefGoogle Scholar
  15. 15.
    K. ichi Kumagai, S. Tsuji, K. Maki, Physica C: Superconductivity 341–348(Part 1), 467 (2000).  https://doi.org/10.1016/S0921-4534(00)00546-3. http://www.sciencedirect.com/science/article/pii/S0921453400005463. (Materials and Mechanisms of Superconductivity High Temperature Superconductors VI) ADSCrossRefGoogle Scholar
  16. 16.
    S. Ohsugi, K. Magishi, S. Matsumoto, Y. Kitaoka, T. Nagata, J. Akimitsu, Phys. Rev. Lett. 82, 4715 (1999).  https://doi.org/10.1103/PhysRevLett.82.4715 ADSCrossRefGoogle Scholar
  17. 17.
    V. Kataev, K.Y. Choi, M. Grüninger, U. Ammerahl, B. Büchner, A. Freimuth, A. Revcolevschi, Phys. Rev. B 64, 104422 (2001).  https://doi.org/10.1103/PhysRevB.64.104422 ADSCrossRefGoogle Scholar
  18. 18.
    M. Isobe, Y. Uchida, E. Takayama-Muromachi, Phys. Rev. B 59, 8703 (1999).  https://doi.org/10.1103/PhysRevB.59.8703 ADSCrossRefGoogle Scholar
  19. 19.
    G.H. Fuller, J. Phys. Chem. Ref. Data 5(4), 835 (1976).  https://doi.org/10.1063/1.555544 ADSCrossRefGoogle Scholar
  20. 20.
    Y.N. Ovchinnikov, K. Biljakovi, J.C. Lasjaunias, P. Monceau, EPL (Europhys. Lett.) 34(9), 645 (1996). http://stacks.iop.org/0295-5075/34/i=9/a=645 ADSCrossRefGoogle Scholar
  21. 21.
    S. Majumdar, V. Hardy, M.R. Lees, D.M. Paul, H. Rousselière, D. Grebille, Phys. Rev. B 69, 024405 (2004).  https://doi.org/10.1103/PhysRevB.69.024405 ADSCrossRefGoogle Scholar
  22. 22.
    K. Magishi, S. Matsumoto, Y. Kitaoka, K. Ishida, K. Asayama, M. Uehara, T. Nagata, J. Akimitsu, Phys. Rev. B 57, 11533 (1998).  https://doi.org/10.1103/PhysRevB.57.11533 ADSCrossRefGoogle Scholar
  23. 23.
    S.A. Carter, B. Batlogg, R.J. Cava, J.J. Krajewski, W.F. Peck Jr., T.M. Rice, Phys. Rev. Lett. 77, 1378 (1996).  https://doi.org/10.1103/PhysRevLett.77.1378 ADSCrossRefGoogle Scholar
  24. 24.
    K.i. Kumagai, S. Tsuji, M. Kato, Y. Koike, Phys. Rev. Lett. 78, 1992 (1997).  https://doi.org/10.1103/PhysRevLett.78.1992 ADSCrossRefGoogle Scholar
  25. 25.
    M. Takigawa, N. Motoyama, H. Eisaki, S. Uchida, Phys. Rev. B 57, 1124 (1998).  https://doi.org/10.1103/PhysRevB.57.1124 ADSCrossRefGoogle Scholar
  26. 26.
    R.S. Eccleston, M. Uehara, J. Akimitsu, H. Eisaki, N. Motoyama, Si Uchida, Phys. Rev. Lett. 81, 1702 (1998).  https://doi.org/10.1103/PhysRevLett.81.1702 ADSCrossRefGoogle Scholar
  27. 27.
    U. Ammerahl, B. Büchner, L. Colonescu, R. Gross, A. Revcolevschi, Phys. Rev. B 62, 8630 (2000).  https://doi.org/10.1103/PhysRevB.62.8630 ADSCrossRefGoogle Scholar
  28. 28.
    D.C. Johnston, R.K. Kremer, M. Troyer, X. Wang, A. Klümper, S.L. Bud’ko, A.F. Panchula, P.C. Canfield, Phys. Rev. B 61, 9558 (2000).  https://doi.org/10.1103/PhysRevB.61.9558 ADSCrossRefGoogle Scholar
  29. 29.
    K. Karmakar, R. Bag, M. Skoulatos, C. Rüegg, S. Singh, Phys. Rev. B 95, 235154 (2017).  https://doi.org/10.1103/PhysRevB.95.235154 ADSCrossRefGoogle Scholar
  30. 30.
    L.P. Regnault, J.P. Boucher, H. Moudden, J.E. Lorenzo, A. Hiess, U. Ammerahl, G. Dhalenne, A. Revcolevschi, Phys. Rev. B 59, 1055 (1999).  https://doi.org/10.1103/PhysRevB.59.1055 ADSCrossRefGoogle Scholar
  31. 31.
    M. Matsuda, T. Yosihama, K. Kakurai, G. Shirane, Phys. Rev. B 59, 1060 (1999).  https://doi.org/10.1103/PhysRevB.59.1060 ADSCrossRefGoogle Scholar
  32. 32.
    M. Matsuda, K. Katsumata, T. Osafune, N. Motoyama, H. Eisaki, S. Uchida, T. Yokoo, S.M. Shapiro, G. Shirane, J.L. Zarestky, Phys. Rev. B 56, 14499 (1997).  https://doi.org/10.1103/PhysRevB.56.14499 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Sahling
    • 1
    • 2
  • J. E. Lorenzo
    • 2
    • 3
  • G. Remenyi
    • 2
    • 3
  • V. L. Katkov
    • 4
  1. 1.Institut für Festkörperr- und MaterialphysikTechnische Universität DresdenDresdenGermany
  2. 2.Institute NéelCNRSGrenobleFrance
  3. 3.Institute NéelUniversité Grenoble AlpesGrenobleFrance
  4. 4.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations