Advertisement

Operation of a Superconducting Nanowire in Two Detection Modes: KID and SPD

  • Edward Schroeder
  • Philip Mauskopf
  • Hamdi Mani
  • Sean Bryan
  • Karl K. Berggren
  • Di Zhu
Article

Abstract

We present the performance of a superconducting nanowire that can be operated in two detection modes: (i) as a kinetic inductance detector (KID) or (ii) as a single-photon detector (SPD). Two superconducting nanowires developed for use as single-photon detectors (SNSPDs) are embedded as the inductive (L) component in resonant inductor/capacitor (LC) circuits coupled to a microwave transmission line. The capacitors are low loss commercial chip capacitors and limit the internal quality factor of the resonators to approximately \(Q_i = 170\). The resonator quality factor, \(Q_r \simeq 23\), is dominated by the coupling to the feedline and limits the detection bandwidth to on the order of 1 MHz. When operated in KID mode, the detectors are AC biased with tones at their resonant frequencies of 45.85 and 91.81 MHz. In the low-bias, standard KID mode, a single photon produces a hot spot that does not turn an entire section of the line normal but only increases the kinetic inductance. In the high-bias, critical KID mode, a photon event turns a section of the line normal and the resonance is destroyed until the normal region is dissipated. When operated as an SPD in Geiger mode, the resonators are DC biased through cryogenic bias tees and each photon produces a sharp voltage step followed by a ringdown signal at the resonant frequency of the detector which is converted to a standard pulse with an envelope detector. We show that AC biasing in the critical KID mode is inferior to the sensitivity achieved in DC-biased SPD mode due to the small fraction of time spent near the critical current with an AC bias.

Keywords

Cryogenic Detector Nanowire Resonator KID SPD Superconducting 

Notes

Acknowledgements

This work is supported in part by NSF AST ATI Grant 1509078.

References

  1. 1.
    Edward Schroeder, Philip Mauskopf, Genady Pilyavsky, Adrian Sinclair, Nathan Smith, Sean Bryan, Hamdi Mani, Dmitry Morozov, Karl Berggren, Di Zhu, Konstantin Smirnov, and Yuriy Vakhtomin. On the measurement of intensity correlations from laboratory and astronomical sources with spads and snspds. volume 9907 of Proc. SPIE, pp. 99070P–99070P–13, (2016)Google Scholar
  2. 2.
    C.M. Natarajan, M.G. Tanner, R.H. Hadfield, Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25(6), 063001 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Di Zhu, Hyeongrak Choi, Tsung-Ju Lu, Qingyuan Zhao, Andrew Dane, Faraz Najafi, Dirk R. Englund, and Karl Berggren. Superconducting nanowire single-photon detector on aluminum nitride. In Conference on Lasers and Electro-Optics, page FTu4C.1. Optical Society of America, (2016)Google Scholar
  4. 4.
    A. Engel, J.J. Renema, K. Ilin, A. Semenov, Detection mechanism of superconducting nanowire single-photon detectors. Supercond. Sci. Technol. 28(11), 114003 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Anthony J Annunziata, Daniel F Santavicca, Luigi Frunzio, Gianluigi Catelani, Michael J Rooks, Aviad Frydman, Daniel E Prober, Tunable superconducting nanoinductors. Nanotechnology 21(44), 445202 (2010)CrossRefGoogle Scholar
  6. 6.
    S. Doerner, A. Kuzmin, S. Wuensch, K. Ilin, M. Siegel, Operation of superconducting nanowire single-photon detectors embedded in lumped-element resonant circuits. IEEE Trans. Appl. Supercond. 26(3), 1–5 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, M. Siegel, Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array. Appl. Phys. Lett. 111(3), 032603 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    M. Hofherr, M. Arndt, K. Il’in, D. Henrich, M. Siegel, J. Toussaint, T. May, H.G. Meyer, Time-tagged multiplexing of serially biased superconducting nanowire single-photon detectors. IEEE Trans. Appl. Supercond. 23(3), 2501205–2501205 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Qing-Yuan Zhao, Di Zhu, Niccolò Calandri, Andrew E Dane, Adam N McCaughan, Francesco Bellei, Hao-Zhu Wang, Daniel F Santavicca, Karl K Berggren, Single-photon imager based on a superconducting nanowire delay line. Nat. Photon. 11(4), 247–251 (2017). ArticleADSCrossRefGoogle Scholar
  10. 10.
    P.D. Mauskopf, Transition Edge Sensors and Kinetic Inductance Detectors in Astronomical Instruments. to appear in PASP, (2017)Google Scholar
  11. 11.
    J. Gao, M.R. Vissers, M.O. Sandberg, F.C.S. da Silva, S.W. Nam, D.P. Pappas, D.S. Wisbey, E.C. Langman, S.R. Meeker, B.A. Mazin, H.G. Leduc, J. Zmuidzinas, K.D. Irwin, A titanium-nitride near-infrared kinetic inductance photon-counting detector and its anomalous electrodynamics. Appl. Phys. Lett. 101(14), 142602 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    K.V. Smirnov, A.V. Divochiy, YuB Vakhtomin, M.V. Sidorova, U.V. Karpova, P.V. Morozov, V.A. Seleznev, A.N. Zotova, DYu. Vodolazov, Rise time of voltage pulses in nbn superconducting single photon detectors. Appl. Phys. Lett. 109(5), 052601 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsArizona State UniversityTempeUSA
  2. 2.School of Earth and Space ExplorationArizona State UniversityTempeUSA
  3. 3.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations