Advertisement

Optimizing Thermal Detectors for Low-Threshold Applications in Neutrino and Dark Matter Experiments

  • N. Bastidon
  • J. Billard
  • E. Figueroa-Feliciano
  • S. Heine
  • Z. Hong
  • H. D. Pinckney
Article
  • 21 Downloads

Abstract

Nuclear recoil detectors with low energy thresholds of 10–100 eV have applications in both neutrino physics (e.g. coherent elastic neutrino-nucleus scattering and neutrinoless double beta decay) as well as for \(\mathscr {O}\)(GeV)-mass dark matter searches. Cryogenic crystal detectors are well suited for these applications, although some require very large masses which can be achieved with arrays of these detectors. An optimization of a design focusing on ease of fabrication and mass production while retaining low energy thresholds is presented. This is achieved by decoupling the complex lithography of the thermal sensor from the large crystal absorber/target, while optimizing the thermal time constants to retain the lowest threshold possible.

Keywords

Transition-edge sensor Sterile neutrino Cryogenic detector Coherent elastic neutrino-nucleus scattering 

Notes

Acknowledgements

DP has been supported by the Northwestern University and the Illinois Space Grant Consortium. GNU paralell has been used to perform this analysis [33].

References

  1. 1.
    D.Z. Freedman, Phys. Rev. D 9, 1389 (1974).  https://doi.org/10.1103/PhysRevD.9.1389 ADSCrossRefGoogle Scholar
  2. 2.
    K. Scholberg, J. Phys. Conf. Ser. 606, 012010 (2015)CrossRefGoogle Scholar
  3. 3.
    M. Abdullah, J.B. Dent, B. Dutta, G.L. Kane, S. Liao, L.E. Strigari (2018). arXiv:1803.01224
  4. 4.
    D.K. Papoulias, T.S. Kosmas, Phys. Rev. D 97, 033003 (2018).  https://doi.org/10.1103/PhysRevD.97.033003 ADSCrossRefGoogle Scholar
  5. 5.
    J.A. Formaggio, E. Figueroa-Feliciano, A.J. Anderson, Phys. Rev. D 85, 013009 (2012).  https://doi.org/10.1103/PhysRevD.85.013009 ADSCrossRefGoogle Scholar
  6. 6.
    B. Dutta, Phys. Rev. D 94, 093002 (2016).  https://doi.org/10.1103/PhysRevD.94.093002 ADSCrossRefGoogle Scholar
  7. 7.
    P.S. Barbeau, J.I. Collar, J. Miyamoto, I. Shipsey, IEEE Trans. Nucl. Sci. 50, 5 (2003).  https://doi.org/10.1109/TNS.2003.818237 CrossRefGoogle Scholar
  8. 8.
    C. Hagmann, A. Bernstein, IEEE Trans. Nucl. Sci. 51, 5 (2004).  https://doi.org/10.1109/TNS.2004.836061 CrossRefGoogle Scholar
  9. 9.
    R. Essig, M. Sholapurkar, T. Yu (2018). ArXiv eprint arXiV:1801.10159
  10. 10.
    B. Dutta, S. Liao, L.E. Strigari, J.W. Walker, Phys. Lett. B 773, 242 (2017).  https://doi.org/10.1016/j.physletb.2017.08.031 ADSCrossRefGoogle Scholar
  11. 11.
    F. Ruppin, J. Billard, E. Figueroa-Feliciano, L. Strigari, Phys. Rev. D 90, 083510 (2014).  https://doi.org/10.1103/PhysRevD.90.083510 ADSCrossRefGoogle Scholar
  12. 12.
  13. 13.
  14. 14.
    G. Agnolet, Nucl. Instrum. Methods Phys. Res. A 853, 53 (2016).  https://doi.org/10.1016/j.nima.2017.02.024 ADSCrossRefGoogle Scholar
  15. 15.
    J. Billard, J. Phys. G Nucl. Part. Phys. 44, 105101 (2017)ADSCrossRefGoogle Scholar
  16. 16.
  17. 17.
    C. Alduino, Phys. Rev. Lett. 120, 132501 (2018). arXiv:1710.07459 ADSCrossRefGoogle Scholar
  18. 18.
    R. Agnese, Phys. Rev. D 95, 082002 (2017).  https://doi.org/10.1103/PhysRevD.95.082002 ADSCrossRefGoogle Scholar
  19. 19.
    R.K. Romani, Appl. Phys. Lett. 112, 043501 (2018).  https://doi.org/10.1063/1.5010699 ADSCrossRefGoogle Scholar
  20. 20.
  21. 21.
  22. 22.
    M. Pyle, E. Figueroa-Feliciano, B. Sadoulet (2015). arXiv:1503.01200v2
  23. 23.
    F. Proebst, J. Low Temp. Phys. 100, 1–2 (1995).  https://doi.org/10.1007/BF00753837 CrossRefGoogle Scholar
  24. 24.
    E. Figueroa-Feliciano, J. Appl. Phys. 99, 114513 (2006).  https://doi.org/10.1063/1.2191449 ADSCrossRefGoogle Scholar
  25. 25.
    P.L. Kapitza, J. Phys. USSR 4, 181 (1941)Google Scholar
  26. 26.
    G. Angloher, Eur. Phys. J. C 76, 441 (2016).  https://doi.org/10.1140/epjc/s10052-016-4278-3 ADSCrossRefGoogle Scholar
  27. 27.
    M. Kiefer, AIP Conf. Proc. 1185, 651 (2009).  https://doi.org/10.1063/1.3292426 ADSCrossRefGoogle Scholar
  28. 28.
    R. Strauss, Nucl. Instrum. Methods A 845, 414–417 (2017).  https://doi.org/10.1016/j.nima.2016.06.060 ADSCrossRefGoogle Scholar
  29. 29.
    R. Agnese, Phys. Rev. Lett. 116, 071301 (2016).  https://doi.org/10.1103/PhysRevLett.116.071301 ADSCrossRefGoogle Scholar
  30. 30.
    G. Wang, IEEE Trans. Appl. Supercond. 24, 4 (2015).  https://doi.org/10.1109/TASC.2016.2646373 CrossRefGoogle Scholar
  31. 31.
    F. Reindl et al. (2017). ArXiv preprint arXiv:1711.01482
  32. 32.
    A. Hubbard. Doctoral dissertation. The University of Wisconsin-Madison (2015)Google Scholar
  33. 33.
    0. Tange, GNU paralell—the command-line power tool. USENIX Mag. 36, 1 (2011).  https://doi.org/10.5281/zenodo.16303 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyNorthwestern UniversityEvanstonUSA
  2. 2.IPNL CNRSVilleurbanneFrance
  3. 3.Kavli Institute MITCambridgeUSA

Personalised recommendations