Advertisement

Journal of Low Temperature Physics

, Volume 194, Issue 1–2, pp 153–165 | Cite as

Common Features in Multi-species Bose–Einstein Condensates and the Origin of the Inherent Critical Phenomena

  • Y. M. Liu
  • Y. Z. He
  • C. G. BaoEmail author
Article
  • 29 Downloads

Abstract

A general approach is proposed to solve the coupled Gross–Pitaevskii equations (CGP) for K-species Bose–Einstein condensates under the Thomas–Fermi approximation. We aim at finding out the common features of these condensates different in K. In particular, two types of phase transitions, full-state transition and partial-state transition, are found. In the former, all species are involved in the transition, while in the latter only a few specified species are significantly involved. This leads to the criticality and the hidden criticality (namely, the criticality found in a condensate with fewer species recovers in a condensate with more species). The former originates from the singularity of the whole matrix of the CGP, while the latter originates from the singularity of a specified sub-matrix (which is related to a few specified species). In general, for any many-body system, the singularity inherent in the equations that govern the system is crucial to its critical behavior.

Keywords

Multi-species Bose–Einstein condensates Criticality Singularity of the Gross–Pitaevskii equations Phase transition 

Notes

Acknowledgements

Supported by the National Natural Science Foundation of China under Grants Nos. 11372122, 11274393, 11574404, and 11275279; the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (No. Y4KF201CJ1); and the National Basic Research Program of China (2013CB933601).

References

  1. 1.
    C.J. Myatt, E.A. Burt, R.W. Ghrist, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 78, 586–589 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    M. Anderlini et al., Phys. Rev. A 71, 061401(R) (2005)ADSCrossRefGoogle Scholar
  3. 3.
    K.K. Ni et al., Science 322, 231–235 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    K. Pilch et al., Phys. Rev. A 79, 042718 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    N. Nemitz, F. Baumer, F. Münchow, S. Tassy, A. Görlitz, Phys. Rev. A 79, 061403 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    L. Wacker et al., Phys. Rev. A 92, 053602 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    M. Groebner et al., J. Mod. Opt. 63, 1829–1839 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    T.L. Ho, V.B. Shenoy, Phys. Rev. Lett. 77, 3276–3279 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    B.D. Esry, C.H. Greene, J.P. Burke, J.L. Bohn, Phys. Rev. Lett. 78, 3594–3597 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    H. Pu, N.P. Bigelow, Phys. Rev. Lett. 80, 1130–1133 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    S.T. Chui, P. Ao, Phys. Rev. A 59, 1473–1476 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    M. Trippenbach, K. Goral, K. Rzazewski, B. Malomed, Y.B. Band, J. Phys. B At. Mol. Phys. 33, 4017–4031 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    F. Riboli, M. Modugno, Phys. Rev. A 65, 063614 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    A.A. Svidzinsky, S.T. Chui, Phys. Rev. A 67, 053608 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    M. Luo, Z.B. Li, C.G. Bao, Phys. Rev. A 75, 043609 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    M. Luo, C.G. Bao, Z.B. Li, Phys. B At. Mol. Opt. Phys. 41, 245301 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    P.N. Galteland, E. Babaev, A. Sudbø, New J. Phys. 17, 103040 (2015)CrossRefGoogle Scholar
  18. 18.
    B. Van Schaeybroeck, J.O. Indekeu, Phys. Rev. A 91, 013626 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    J.O. Indekeu, C.Y. Lin, N.V. Thu, B. Schaeybroeck, T.H. Phat, Phys. Rev. A 91, 033615 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    P. Kuopanportti, T.V. Orlova, M.V. Milošević, Phys. Rev. A 91, 043605 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    J. Polo et al., Phys. Rev. A 91, 053626 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    J.S. You, I.K. Liu, D.W. Wang, Phys. Rev. A 93, 053623 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    P. Mujal, B. Julia-Diaz, A. Popps, Phys. Rev. A 93, 043619 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    R. Cipolatti, L. Villegas-Lelovsky, M.C. Chung, C. Trallero-Giner, J. Phys. A 49, 145201 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Z.B. Li, Y.M. Liu, D.X. Yao, C.G. Bao, J. Phys. B At. Mol. Opt. Phys. 50, 135301 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Y.M. Liu, Y.Z. He, C.G. Bao, Sci. Rep. 7, 6585 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    H. Suhl, B.T. Matthias, L.R. Walker, Phys. Rev. Lett. 3, 552–554 (1959)ADSCrossRefGoogle Scholar
  28. 28.
    L. Komendova, Y. Chen, A.A. Shanenko, M.V. Milosevic, F.M. Peeters, Phys. Rev. Lett. 108, 207002 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    V. Stanev, Z. Tesanovic, Phys. Rev. B 81, 134522 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    M. Silaev, E. Babaev, Phys. Rev. B 84, 094515 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    M. Caliari, M. Squassina, Electron. J. Differ. Equs. 79, 1–15 (2008)Google Scholar
  32. 32.
    K. Manikandan, P. Muruganandam, M. Senthilvelan, M. Lakshmanan, Phys. Rev. E 93, 032212 (2016)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    N.V. Orlova, P. Kuopanportti, M.V. Milošević, Phys. Rev. A 94, 023617 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    M. Cipriani, M. Nitta, Phys. Rev. A 88, 013634 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Y.M. Liu, Y.Z. He, C.G. Bao, J. Phys. A Math. Theor. 50, 275301 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Y.Z. He, Y.M. Liu, C.G. Bao, Phys. Rev. A 91, 033620 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsShaoguan UniversityShaoguanPeople’s Republic of China
  2. 2.School of PhysicsSun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  3. 3.State Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations