Journal of Low Temperature Physics

, Volume 194, Issue 1–2, pp 136–141 | Cite as

Performance of Tantalum STJ X-ray Detectors at Elevated Count Rates

  • M. H. Carpenter
  • F. Ponce
  • S. Friedrich
  • R. CantorEmail author


We have developed an X-ray detector system based on Ta superconducting tunnel junctions (STJs) with an energy resolution below 10 eV under 1 keV. A principal advantage of STJs over other low-temperature detectors is their high count rate capability. In this work, we have optimized the operating conditions and digital pulse processing parameters for input count rates up to 25 kcps/pixel. Resolution below 10 eV is maintained up to 2.5 kcps/pixel, and at input rates of 25 kcps per pixel the resolution is 26 eV FWHM at 525 eV.


Ta STJ Low-temperature detectors Superconducting tunnel junctions X-ray spectroscopy detectors Bench-top X-ray spectroscopy XAS EXAFS 



This work was supported by the US National Institutes of Health through Contract 1R43GM122163-0, and by the US Department of Energy through Contracts DE-SC0006214 and DE-SC0004359. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.


  1. 1.
    R. Cantor, H. Naito, R. Terborg, Microsc. Microanal. 18(S2), 1228–1229 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    S. Friedrich, T. Funk, O. Drury, S.E. Labov, S.P. Cramer, Rev. Sci. Instrum. 73(3), 1629–1631 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    F.S. Porter, J.S. Adams, P. Beiersdorfer, G.V. Brown, J. Clementson, M. Frankel, S.M. Kahn, R.L. Kelley, A. Kilbourne, AIP Conf. Proc. 1185, 454–457 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    J. Uhlig et al., Phys. Rev. Lett. 110(13), 138302 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    S. Friedrich, J. Harris, W.K. Warburton, M.H. Carpenter, J.A. Hall, R. Cantor, J. Low Temp. Phys. 176(34), 553–559 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    J. Uhlig, W.B. Doriese, J.W. Fowler, D.S. Swetz, C. Jaye, D.A. Fischer, J. Synchrotron Radiat. 22(3), 766–775 (2015)CrossRefGoogle Scholar
  7. 7.
    J.-P. Porst et al., J. Low Temp. Phys. 176(56), 617–623 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    F. Ponce, E. Swanberg, J. Burke, R. Henderson, S. Friedrich, Phys. Rev. C 97(5), 1–4 (2018)CrossRefGoogle Scholar
  9. 9.
    M. Kurakado, Nucl. Instrum. Methods 196, 275 (1982)ADSCrossRefGoogle Scholar
  10. 10.
    S. Kraft et al., J. Appl. Phys. 86(12), 7189 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    C.A. Mears, S.E. Labov, A.T. Barfknecht, Appl. Phys. Lett. 63(21), 2961–2963 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    M. Ohkubo, D. Fukuda, I. Sakamoto, N. Hayashi, J. Martin, F. Panteleit, R.P. Huebener, J. Appl. Phys. 85, 595–599 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    M.H. Carpenter, S. Friedrich, J.A. Hall, J. Harris, R. Cantor, J. Low Temp. Phys. 176(3), 222–227 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    S. Friedrich, M.H. Carpenter, O.B. Drury, W.K. Warburton, J. Harris, J. Hall, R. Cantor, J. Low Temp. Phys. 167(5), 741–747 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    W.K. Warburton, J.T. Harris, S. Friedrich, Nucl. Instrum. Methods A 784, 236–241 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.STAR CryoelectronicsSanta FeUSA
  2. 2.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations