Advertisement

Journal of Low Temperature Physics

, Volume 194, Issue 1–2, pp 99–105 | Cite as

Silicon PIN Diodes as Neganov–Trofimov–Luke Cryogenic Light Detectors

  • X. DefayEmail author
  • E. Mondragon
  • J.-C. Lanfranchi
  • A. Langenkämper
  • A. Münster
  • W. Potzel
  • S. Schönert
  • S. Wawoczny
  • M. Willers
Article

Abstract

Cryogenic rare event searches based on heat and light composite calorimeters have a common need for large area photon detectors with high quantum efficiency, good radiopurity and high sensitivity. By employing the Neganov–Trofimov–Luke effect, the phonon signal of particle interactions in a semiconductor absorber operated at cryogenic temperatures can be amplified by drifting the photogenerated electrons and holes in an electric field. We present here the most recent results of a Neganov–Trofimov–Luke effect light detector with an electric field configuration optimized to improve the charge collection within the absorber.

Keywords

Cryogenic detector Silicon Neganov–Trofimov–Luke effect Transition edge sensors Charge collection PIN photodiode 

Notes

Acknowledgements

This research was supported by the DFG cluster of excellence Origin and Structure of the Universe (www.universe-cluster.de).

References

  1. 1.
    G. Angloher et al., Eur. Phys. J. C 76, 25 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    D. Artusa et al., Eur. Phys. J. C 74, 2956 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    J. Billard et al., J. Phys. G Nucl. Part. Phys. 44, 10 (2017)CrossRefGoogle Scholar
  4. 4.
    B. Neganov, V. Trofimov, Otkryt. izobret. 146, 215 (1985)Google Scholar
  5. 5.
    P. Luke, J. Appl. Phys. 64, 6858 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    M.P. Chapellier, G. Chardin, L. Miramonti, X.F. Navick, J. Low Temp. Phys. 284, 2135 (2000)Google Scholar
  7. 7.
    M.P. Chapellier, J. Low Temp. Phys. 178, 237 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    M. Stark, O. Boslau, F. Feilitzsch, J. Jochum, J. Kemmer, W. Potzel, W. Rau, Nucl. Instrum. Methods Phys. Res. Sect. A 545, 738 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    O. Azzolini et al., Phys. Rev. Lett. 120, 232502 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    R.K. Romani et al., Appl. Phys. Lett. 112, 043501 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    X. Defay, E. Mondragon, M. Willers, A. Langenkämper, J.-C. Lanfranchi, A. Münster, A. Zöller, S. Wawoczny, H. Steiger, F. Hitzler, C. Bruhn, S. Schönert, W. Potzel, M. Chapellier, J. Low Temp. Phys. 57, 1 (2016)Google Scholar
  12. 12.
    E. Tschegg, K. Humer, H.W. Weber, Cryogenics 31, 878 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    Mirion Technologies (Canberra BNLS), Z.1. Researchpark 80 1731 Zellik, BelgiumGoogle Scholar
  14. 14.
    G. Jellison Jr., F. Modine, J. Appl. Phys. 53, 3745 (1982)ADSCrossRefGoogle Scholar
  15. 15.
    G. Jellison Jr., S. Withrow, J. McCamy, J. Budai, D. Lubben, M. Godbole, Phys. Rev. B 52, 14607 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    B. Wall et al., Nucl. Instrum. Methods Phys. Res. Sect. A 744, 73 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    E. Simoen et al., J. Appl. Phys. 70, 1016 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    D.D. Coon, S.D. Gunapala, J. Appl. Phys. 57, 5525 (1985)ADSCrossRefGoogle Scholar
  19. 19.
    C. Isaila, C. Ciemniak, Fv Feilitzsch, A. Gütlein, J. Kemmer, T. Lachenmaier, J.-C. Lanfranchi, S. Pfister, W. Potzel, S. Roth, Mv Sivers, R. Strauss, W. Westphal, F. Wiest, Phys. Lett. B 160, 716 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • X. Defay
    • 1
    Email author
  • E. Mondragon
    • 1
  • J.-C. Lanfranchi
    • 1
  • A. Langenkämper
    • 1
  • A. Münster
    • 1
  • W. Potzel
    • 1
  • S. Schönert
    • 1
  • S. Wawoczny
    • 1
  • M. Willers
    • 1
  1. 1.Excellence Cluster Universe and Physics DepartmentTechnical University of MunichGarchingGermany

Personalised recommendations