In this appendix, we show the second, fourth and sixth coefficients of the mean-field Landau at zero temperature in the case of anti-ferromagnetic interaction with external magnetic field. Furthermore, as these values are local, we drop the site indices in the following calculations
$$\begin{aligned} a_{2}^{\text {MF}}\left( \alpha \right)= & {} \left( zJ\right) ^{2}\left[ \frac{M_{\alpha ,S,m,n}^{2}}{\left( \triangle E_{S+1,m+\alpha ,n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha ,S,m,n}^{2}}{\left( \triangle E_{S-1,m+\alpha ,n+1}^{\left( 0\right) }\right) }\right. \nonumber \\&\left. +\,\frac{O_{\alpha ,S,m,n}^{2}}{\left( \triangle E_{S+1,m-\alpha ,n-1}^{\left( 0\right) }\right) }+\frac{P_{\alpha ,S,m,n}^{2}}{\left( \triangle E_{S-1,m-\alpha ,n-1}^{\left( 0\right) }\right) }\right] +zJ \end{aligned}$$
(A.1)
$$\begin{aligned}&a_{4}^{\text {MF}}\left( \alpha _{1},\alpha _{2}\mid \alpha _{3},\alpha _{4}\right) \nonumber \\&\quad =(zJ)^{4}\left[ \frac{M_{\alpha _{2},S,m,n}M_{\alpha _{4},S,m,n}M_{\alpha _{3},S+1,m+\alpha _{4},n+1}M_{\alpha _{1},S+1,m+\alpha _{2},n+1}\delta _{\alpha _{2}+\alpha _{1},\alpha _{3}+\alpha _{4}}}{\left( \triangle E_{S+1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{2}+\alpha _{1},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\right. \nonumber \\&\qquad +\,\frac{M_{\alpha _{2},S,m,n}M_{\alpha _{4},S,m,n}N_{\alpha _{3},S+1,m+\alpha _{4},n+1}N_{\alpha _{1},S+1,m+\alpha _{2},n+1}\delta _{\alpha _{2}+\alpha _{1},\alpha _{3}+\alpha _{4}}}{\left( \triangle E_{S+1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{3}+\alpha _{4},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\nonumber \\&\qquad +\,\frac{M_{\alpha _{2},S,m,n}N_{\alpha _{4},S,m,n}M_{\alpha _{3},S-1,m+\alpha _{4},n+1}N_{\alpha _{1},S+1,m+\alpha _{2},n+1}\delta _{\alpha _{2}+\alpha _{1},\alpha _{3}+\alpha _{4}}}{\left( \triangle E_{S+1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{3}+\alpha _{4},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\nonumber \\&\qquad +\,\frac{M_{\alpha _{2},S,m,n}M_{\alpha _{4},S,m,n}O_{\alpha _{3},S+1,m+\alpha _{2},n+1}O_{\alpha _{1},S+1,m+\alpha _{4},n+1}\delta _{\alpha _{2}+\alpha _{1},\alpha _{3}+\alpha _{4}}}{\left( \triangle E_{S+1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{4}-\alpha _{1},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\nonumber \\&\qquad +\,\frac{M_{\alpha _{4},S,m,n}O_{\alpha _{3},S,m,n}M_{\alpha _{2},S+1,m+\alpha _{3},n+1}O_{\alpha _{1},S+1,m+\alpha _{4},n+1}\delta _{\alpha _{2}+\alpha _{1},\alpha _{3}+\alpha _{4}}}{\left( \triangle E_{S+1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{4}-\alpha _{1},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{3},n-1}^{\left( 0\right) }\right) }\nonumber \\&\qquad +\,\frac{N_{\alpha _{4},S,m,n}M_{\alpha _{2},S,m,n}M_{\alpha _{3},S-1,m+\alpha _{4},n+1}N_{\alpha _{1},S+1,m+\alpha _{2},n+1}\delta _{\alpha _{2}+\alpha _{1},\alpha _{3}+\alpha _{4}}}{\left( \triangle E_{S+1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{3}+\alpha _{4},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\nonumber \\&\qquad +\,\frac{N_{\alpha _{4},S,m,n}N_{\alpha _{2},S,m,n}M_{\alpha _{3},S-1,m+\alpha _{4},n+1}M_{\alpha _{1},S-1,m+\alpha _{2},n+1}\delta _{\alpha _{2}+\alpha _{1},\alpha _{3}+\alpha _{4}}}{\left( \triangle E_{S-1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{3}+\alpha _{4},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\nonumber \\&\qquad +\,\frac{N_{\alpha _{2},S,m,n}N_{\alpha _{4},S,m,n}N_{\alpha _{3},S-1,m+\alpha _{4},n+1}N_{\alpha _{1},S-1,m+\alpha _{2},n+1}\delta _{\alpha _{2}+\alpha _{1},\alpha _{3}+\alpha _{4}}}{\left( \triangle E_{S-1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{2}+\alpha _{1},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\nonumber \\&\qquad +\,\frac{N_{\alpha _{1},S,m,n}N_{\alpha _{4},S,m,n}P_{\alpha _{3},S-1,m+\alpha _{4},n+1}P_{\alpha _{2},S-1,m+\alpha _{1},n+1}\delta _{\alpha _{2}+\alpha _{1},\alpha _{3}+\alpha _{4}}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{1}-\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\nonumber \\&\qquad +\,\frac{N_{\alpha _{1},S,m,n}P_{\alpha _{4},S,m,n}N_{\alpha _{3},S-1,m-\alpha _{4},n-1}P_{\alpha _{2},S-1,m+\alpha _{1},n+1}\delta _{\alpha _{2}+\alpha _{1},\alpha _{3}+\alpha _{4}}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{1}-\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{4},n+1}^{\left( 0\right) }\right) }\nonumber \\&\qquad +\,\frac{O_{\alpha _{1},S,m,n}M_{\alpha _{4},S,m,n}O_{\alpha _{3},S+1,m+\alpha _{4},n+1}M_{\alpha _{2},S+1,m-\alpha _{1},n-1}\delta _{\alpha _{2}+\alpha _{1},\alpha _{3}+\alpha _{4}}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{1}+\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\nonumber \\&\qquad +\,\frac{O_{\alpha _{1},S,m,n}O_{\alpha _{4},S,m,n}M_{\alpha _{3},S+1,m-\alpha _{4},n-1}M_{\alpha _{2},S+1,m-\alpha _{1},n-1}\delta _{\alpha _{2}+\alpha _{1},\alpha _{3}+\alpha _{4}}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{1}+\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) }\nonumber \\ \end{aligned}$$
$$\begin{aligned}&\qquad +\,\frac{O_{\alpha _{1},S,m,n}O_{\alpha _{4},S,m,n}O_{\alpha _{3},S+1,m-\alpha _{4},n-1}O_{\alpha _{2},S+1,m-\alpha _{1},n-1}\delta _{\alpha _{2}+\alpha _{1},\alpha _{3}+\alpha _{4}}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{2}-\alpha _{1},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) }\nonumber \\&\qquad +\,\frac{O_{\alpha _{1},S,m,n}O_{\alpha _{4},S,m,n}P_{\alpha _{3},S+1,m-\alpha _{4},n-1}P_{\alpha _{2},S+1,m-\alpha _{1},n-1}\delta _{\alpha _{2}+\alpha _{1},\alpha _{3}+\alpha _{4}}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) \left( {{\triangle }}E_{S+1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) }\nonumber \\&\qquad +\,\frac{O_{\alpha _{1},S,m,n}P_{\alpha _{4},S,m,n}O_{\alpha _{3},S-1,m-\alpha _{4},n-1}P_{\alpha _{2},S+1,m-\alpha _{1},n-1}\delta _{\alpha _{2}+\alpha _{1},\alpha _{3}+\alpha _{4}}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) }\nonumber \\&\qquad +\,\frac{P_{\alpha _{1},S,m,n}N_{\alpha _{4},S,m,n}P_{\alpha _{3},S-1,m+\alpha _{4},n+1}N_{\alpha _{2},S-1,m-\alpha _{1},n-1}\delta _{\alpha _{2}+\alpha _{1},\alpha _{3}+\alpha _{4}}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{1}+\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\nonumber \\&\qquad +\,\frac{P_{\alpha _{1},S,m,n}P_{\alpha _{4},S,m,n}N_{\alpha _{3},S-1,m-\alpha _{4},n-1}N_{\alpha _{2},S-1,m-\alpha _{1},n-1}\delta _{\alpha _{2}+\alpha _{1},\alpha _{3}+\alpha _{4}}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{1}+\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) }\nonumber \\&\qquad +\,\frac{P_{\alpha _{1},S,m,n}O_{\alpha _{4},S,m,n}P_{\alpha _{3},S+1,m-\alpha _{4},n-1}O_{\alpha _{2},S-1,m-\alpha _{1},n-1}\delta _{\alpha _{2}+\alpha _{1},\alpha _{3}+\alpha _{4}}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\nonumber \\&\qquad +\,\frac{P_{\alpha _{1},S,m,n}P_{\alpha _{4},S,m,n}O_{\alpha _{3},S-1,m-\alpha _{4},n-1}O_{\alpha _{2},S-1,m-\alpha _{1},n-1}\delta _{\alpha _{2}+\alpha _{1},\alpha _{3}+\alpha _{4}}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{1}+\alpha _{2},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) }\nonumber \\&\qquad +\,\frac{P_{\alpha _{1},S,m,n}P_{\alpha _{4},S,m,n}P_{\alpha _{3},S-1,m-\alpha _{4},n-1}P_{\alpha _{2},S-1,m-\alpha _{1},n-1}\delta _{\alpha _{2}+\alpha _{1},\alpha _{3}+\alpha _{4}}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) }\nonumber \\&\qquad -\,\frac{M_{\alpha _{4},S,m,n}M_{\alpha _{1},S,m,n}M_{\alpha _{3},S,m,n}M_{\alpha _{2},S,m,n}\delta _{\alpha _{1},\alpha _{4}}\delta _{\alpha _{2},\alpha _{3}}}{\left( \triangle E_{S+1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) ^{2}}\nonumber \\&\qquad -\,\frac{M_{\alpha _{4},S,m,n}M_{\alpha _{1},S,m,n}N_{\alpha _{3},S,m,n}N_{\alpha _{2},S,m,n}\delta _{\alpha _{1},\alpha _{4}}\delta _{\alpha _{2},\alpha _{3}}}{\left( \triangle E_{S+1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) ^{2}}\nonumber \\&\qquad -\,\frac{M_{\alpha _{4},S,m,n}M_{\alpha _{1},S,m,n}O_{\alpha _{3},S,m,n}O_{\alpha _{2},S,m,n}\delta _{\alpha _{1},\alpha _{4}}\delta _{\alpha _{2},\alpha _{3}}}{\left( \triangle E_{S+1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{3},n-1}^{\left( 0\right) }\right) ^{2}}\nonumber \\&\qquad -\,\frac{M_{\alpha _{4},S,m,n}M_{\alpha _{1},S,m,n}P_{\alpha _{3},S,m,n}P_{\alpha _{2},S,m,n}\delta _{\alpha _{1},\alpha _{4}}\delta _{\alpha _{2},\alpha _{3}}}{\left( \triangle E_{S+1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{3},n-1}^{\left( 0\right) }\right) ^{2}}\nonumber \\&\qquad -\,\frac{N_{\alpha _{4},S,m,n}N_{\alpha _{1},S,m,n}M_{\alpha _{3},S,m,n}M_{\alpha _{2},S,m,n}\delta _{\alpha _{1},\alpha _{4}}\delta _{\alpha _{2},\alpha _{3}}}{\left( \triangle E_{S-1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) ^{2}}\nonumber \\&\qquad -\,\frac{N_{\alpha _{4},S,m,n}N_{\alpha _{1},S,m,n}N_{\alpha _{3},S,m,n}N_{\alpha _{2},S,m,n}\delta _{\alpha _{1},\alpha _{4}}\delta _{\alpha _{2},\alpha _{3}}}{\left( \triangle E_{S-1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) ^{2}}\nonumber \\&\qquad -\,\frac{N_{\alpha _{4},S,m,n}N_{\alpha _{1},S,m,n}O_{\alpha _{3},S,m,n}O_{\alpha _{2},S,m,n}\delta _{\alpha _{1},\alpha _{4}}\delta _{\alpha _{2},\alpha _{3}}}{\left( \triangle E_{S-1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{3},n-1}^{\left( 0\right) }\right) ^{2}} \end{aligned}$$
$$\begin{aligned}&\qquad -\,\frac{N_{\alpha _{4},S,m,n}N_{\alpha _{1},S,m,n}P_{\alpha _{3},S,m,n}P_{\alpha _{2},S,m,n}\delta _{\alpha _{1},\alpha _{4}}\delta _{\alpha _{2},\alpha _{3}}}{\left( \triangle E_{S-1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{3},n-1}^{\left( 0\right) }\right) ^{2}}\nonumber \\&\qquad -\,\frac{O_{\alpha _{4},S,m,n}O_{\alpha _{1},S,m,n}M_{\alpha _{3},S,m,n}M_{\alpha _{2},S,m,n}\delta _{\alpha _{1},\alpha _{4}}\delta _{\alpha _{2},\alpha _{3}}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) ^{2}}\nonumber \\&\qquad -\,\frac{O_{\alpha _{4},S,m,n}O_{\alpha _{1},S,m,n}N_{\alpha _{3},S,m,n}N_{\alpha _{2},S,m,n}\delta _{\alpha _{1},\alpha _{4}}\delta _{\alpha _{2},\alpha _{3}}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) ^{2}}\nonumber \\&\qquad -\,\frac{O_{\alpha _{4},S,m,n}O_{\alpha _{1},S,m,n}O_{\alpha _{3},S,m,n}O_{\alpha _{2},S,m,n}\delta _{\alpha _{1},\alpha _{4}}\delta _{\alpha _{2},\alpha _{3}}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{3},n-1}^{\left( 0\right) }\right) ^{2}}\nonumber \\&\qquad -\,\frac{P_{\alpha _{4},S,m,n}P_{\alpha _{1},S,m,n}N_{\alpha _{3},S,m,n}N_{\alpha _{2},S,m,n}\delta _{\alpha _{1},\alpha _{4}}\delta _{\alpha _{2},\alpha _{3}}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) ^{2}}\nonumber \\&\qquad -\,\frac{P_{\alpha _{4},S,m,n}P_{\alpha _{1},S,m,n}M_{\alpha _{3},S,m,n}M_{\alpha _{2},S,m,n}\delta _{\alpha _{1},\alpha _{4}}\delta _{\alpha _{2},\alpha _{3}}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) ^{2}}\nonumber \\&\qquad -\,\frac{P_{\alpha _{4},S,m,n}P_{\alpha _{1},S,m,n}N_{\alpha _{3},S,m,n}N_{\alpha _{2},S,m,n}\delta _{\alpha _{1},\alpha _{4}}\delta _{\alpha _{2},\alpha _{3}}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) ^{2}}\nonumber \\&\qquad \left. -\,\frac{P_{\alpha _{4},S,m,n}P_{\alpha _{1},S,m,n}O_{\alpha _{3},S,m,n}O_{\alpha _{2},S,m,n}\delta _{\alpha _{1},\alpha _{4}}\delta _{\alpha _{2},\alpha _{3}}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{3},n-1}^{\left( 0\right) }\right) ^{2}}\right. \nonumber \\&\qquad \left. -\,\frac{P_{\alpha _{4},S,m,n}P_{\alpha _{1},S,m,n}P_{\alpha _{3},S,m,n}P_{\alpha _{2},S,m,n}\delta _{\alpha _{1},\alpha _{4}}\delta _{\alpha _{2},\alpha _{3}}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{3},n-1}^{\left( 0\right) }\right) ^{2}}\right] _{\begin{array}{c} \alpha _{1}\leftrightarrow \alpha _{2}\text {,}\\ \alpha _{3}\leftrightarrow \alpha _{4} \end{array}}, \end{aligned}$$
(A.2)
where
\(\triangle E^{\left( 0\right) }=E_{S,m,n}^{\left( 0\right) }-E_{S^{\prime },m^{\prime },n^{\prime }}^{\left( 0\right) }\),
\(\alpha _{1}\leftrightarrow \alpha _{2}\) refer to symmetrization with respect to spin induces.
$$\begin{aligned}&a_{6}^{MF}\left( \alpha _{1},\alpha _{2},\alpha _{3}\mid \alpha _{4},\alpha _{5},\alpha _{6}\right) =(\text {z}J)^{6}\delta _{\alpha _{1}+\alpha _{2}+\alpha _{3},\alpha _{4}+\alpha _{5}+\alpha _{6}}\nonumber \\&\quad \times \left[ \left( \frac{O_{\alpha _{1},S,m,n}P_{\alpha _{2},S+1,m-\alpha _{1},n-1}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{1},S,m,n}O_{\alpha _{2},S-1,m-\alpha _{1},n-1}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) }\right) \right. \nonumber \\&\quad \times \left( \frac{O_{\alpha _{3},S,m-\alpha _{1}-\alpha _{2},n-2}O_{\alpha _{4},S,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S+1,m-\alpha _{1}-\alpha _{2}-\alpha _{3},n-3}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{5}-\alpha _{6},n-2}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad +\,\frac{P_{\alpha _{3},S,m-\alpha _{1}-\alpha _{2},n-2}P_{\alpha _{4}S,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S-1,m-\alpha _{1}-\alpha _{2}-\alpha _{3},n-3}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{5}-\alpha _{6},n-2}^{\left( 0\right) }\right) }\nonumber \\&\quad +\,\frac{M_{\alpha _{4},S,m-\alpha _{1}-\alpha _{2},n-2}M_{\alpha _{3},S,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S+1,m-\alpha _{1}-\alpha _{1}+\alpha _{4},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{5}-\alpha _{6},n-2}^{\left( 0\right) }\right) }\nonumber \\&\quad \left. +\,\frac{N_{\alpha _{4},S,m-\alpha _{1}-\alpha _{2},n-2}N_{\alpha _{3},S,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S-1,m-\alpha _{1}-\alpha _{1}+\alpha _{4},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{5}-\alpha _{6},n-2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{P_{\alpha _{5},,S+1,m-\alpha _{6},n-1}O_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }+\frac{O_{\alpha _{5},,S-1,m-\alpha _{6},n-1}P_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{M_{\alpha _{1},S,m,n}N_{\alpha _{2},S+1,m+\alpha _{1},n+1}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{1}+\alpha _{2},n+2}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{N_{\alpha _{1},S,m,n}M_{\alpha _{2},S-1,m-+\alpha ,n+1}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{1}+\alpha _{2},n+2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{4},S,m+\alpha _{1}+\alpha _{2},n+2}O_{\alpha _{3},S,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S+1,m+\alpha _{1}+\alpha _{2}-\alpha _{4},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{5}+\alpha _{6},n+2}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{P_{\alpha _{4},S,m+\alpha _{1}+\alpha _{2},n+2}P_{\alpha _{3},S,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S-1,m+\alpha _{1}+\alpha _{2}-\alpha _{4},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{5}+\alpha _{6},n+2}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{M_{\alpha _{3},S,m+\alpha _{1}+\alpha _{2},n+2}M_{\alpha _{4},S,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S+1,m+\alpha _{1}+\alpha _{1}+\alpha _{3},n-+3}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{5}+\alpha _{6},n+2}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{N_{\alpha _{3},S,m+\alpha _{1}+\alpha _{2},n+2}N_{\alpha _{4},S,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S-1,m+\alpha _{1}+\alpha _{1}+\alpha _{3},n+3}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{5}+\alpha _{6},n+2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{N_{\alpha _{5},,S+1,m+\alpha _{6},n+1}M_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }+\frac{M_{\alpha _{5},,S-1,m+\alpha _{6},n+1}N_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{O_{\alpha _{5},,S+1,m-\alpha _{6},n-1}O_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{5}-\alpha _{6},n-2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{1},S,m,n}P_{\alpha _{2},S+1,m-\alpha _{1},n-1}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{1},S,m,n}O_{\alpha _{2},S-1,m-\alpha _{1},n-1}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{3},S,m-\alpha _{1}-\alpha _{2},n-2}P_{\alpha _{4},S+2,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S+1,m-\alpha _{1}-\alpha _{2}-\alpha _{3},n-3}^{\left( 0\right) }\right) }+\frac{M_{\alpha _{4},S,m-\alpha _{1}-\alpha _{2},n-2}N_{\alpha _{3},S+2,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S+1,m-\alpha _{1}-\alpha _{2}+\alpha _{4},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{P_{\alpha _{5},,S-1,m-\alpha _{6},n-1}P_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{5}-\alpha _{6},n-2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{1},S,m,n}P_{\alpha _{2},S+1,m-\alpha _{1},n-1}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{1},S,m,n}O_{\alpha _{2},S-1,m-\alpha _{1},n-1}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{P_{\alpha _{3},S,m-\alpha _{1}-\alpha _{2},n-2}O_{\alpha _{4},S-2,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S-1,m-\alpha _{1}-\alpha _{2}-\alpha _{3},n-3}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{4},S,m-\alpha _{1}-\alpha _{2},n-2}M_{\alpha _{3},S-2,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S-1,m-\alpha _{1}-\alpha _{2}+\alpha _{4},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad +\left( \frac{M_{\alpha _{5},,S+1,m+\alpha _{6},n+1}M_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{5}+\alpha _{6},n+2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{1},S,m,n}N_{\alpha _{2},S+1,m+\alpha _{1},n+1}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{1}+\alpha _{2},n+2}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{1},S,m,n}M_{\alpha _{2},S-1,m-+\alpha ,n+1}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{1}+\alpha _{2},n+2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{4},S,m+\alpha _{1}+\alpha _{2},n+2}P_{\alpha _{3},S+2,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S+1,m+\alpha _{1}+\alpha _{2}-\alpha _{4},n+1}^{\left( 0\right) }\right) }+\frac{M_{\alpha _{3},S,m+\alpha _{1}+\alpha _{2},n+2}N_{\alpha _{4},S+2,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S+1,m+\alpha _{1}+\alpha _{2}+\alpha _{3},n+3}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{N_{\alpha _{5},,S-1,m+\alpha _{6},n+1}N_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{5}+\alpha _{6},n+2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{1},S,m,n}N_{\alpha _{2},S+1,m+\alpha _{1},n+1}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{1}+\alpha _{2},n+2}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{1},S,m,n}M_{\alpha _{2},S-1,m-+\alpha ,n+1}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{1}+\alpha _{2},n+2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{P_{\alpha _{4},S,m+\alpha _{1}+\alpha _{2},n+2}O_{\alpha _{3},S-2,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S+1,m+\alpha _{1}+\alpha _{2}-\alpha _{4},n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{3},S,m+\alpha _{1}+\alpha _{2},n+2}M_{\alpha _{4},S-2,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S+1,m+\alpha _{1}+\alpha _{2}+\alpha _{3},n+3}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{O_{\alpha _{1},S,m,n}P_{\alpha _{2},S+1,m-\alpha _{1},n-1}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{1},S,m,n}O_{\alpha _{2},S-1,m-\alpha _{1},n-1}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{5},S,m-\alpha _{1}-\alpha _{2},n-2}P_{\alpha _{4},S+2,m+\alpha _{3}-\alpha _{6},n}M_{\alpha _{3},S+1,m-\alpha _{6},n-1}O_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1}-\alpha _{2}+\alpha _{5},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{3}-\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad +\,\frac{M_{\alpha _{6},S,m-\alpha _{1}-\alpha _{2},n-2}P_{\alpha _{4},S+2,m-\alpha _{5}+\alpha _{3},n}O_{\alpha _{5},S+1,m+\alpha _{3},n+1}M_{\alpha _{3},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1}-\alpha _{2}+\alpha _{6},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{5}+\alpha _{3},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{3},n+1}^{\left( 0\right) }\right) }\nonumber \\&\quad +\,\frac{N_{\alpha _{5},S,m-\alpha _{1}-\alpha _{2},n-2}O_{\alpha _{4},S-2,m+\alpha _{3}-\alpha _{6},n}N_{\alpha _{3},S-1,m-\alpha _{6},n-1}P_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1}-\alpha _{2}+\alpha _{5},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{3}-\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\nonumber \\&\quad \left. +\,\frac{N_{\alpha _{6},S,m-\alpha _{1}-\alpha _{2},n-2}O_{\alpha _{4},S-2,m-\alpha _{5}+\alpha _{3},n}P_{\alpha _{5},S-1,m+\alpha _{3},n+1}N_{\alpha _{3},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1}-\alpha _{2}+\alpha _{6},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{5}+\alpha _{3},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{3},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{M_{\alpha _{1},S,m,n}N_{\alpha _{2},S+1,m+\alpha _{1},n+1}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{1}+\alpha _{2},n+2}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{1},S,m,n}M_{\alpha _{2},S-1,m+\alpha _{1},n+1}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{1}+\alpha _{2},n+2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{5},S,m+\alpha _{1}+\alpha _{2},n+2}N_{\alpha _{4},S+2,m-\alpha _{3}+\alpha _{6},n}O_{\alpha _{3},,S+1,m+\alpha _{6},n+1}M_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1}+\alpha _{2}-\alpha _{5},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{3}+\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad +\,\frac{O_{\alpha _{6},S,m+\alpha _{1}+\alpha _{2},n+2}N_{\alpha _{4},S+2,m+\alpha _{5}-\alpha _{3},n}M_{\alpha _{5},,S+1,m-\alpha _{3},n-1}O_{\alpha _{3},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1}+\alpha _{2}-\alpha _{6},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{5}-\alpha _{3},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{3},n-1}^{\left( 0\right) }\right) }\nonumber \\&\quad +\,\frac{P_{\alpha _{5},S,m+\alpha _{1}+\alpha _{2},n+2}M_{\alpha _{4},S-2,m-\alpha _{3}+\alpha _{6},n}P_{\alpha _{3},,S-1,m+\alpha _{6},n+1}N_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1}+\alpha _{2}-\alpha _{5},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{3}+\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\nonumber \\&\quad \left. +\,\frac{P_{\alpha _{6},S,m+\alpha _{1}+\alpha _{2},n+2}M_{\alpha _{4},S-2,m+\alpha _{5}-\alpha _{3},n}N_{\alpha _{5},,S-1,m-\alpha _{3},n-1}P_{\alpha _{3},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1}+\alpha _{2}-\alpha _{6},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{5}-\alpha _{3},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{3},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad +\left( \frac{P_{\alpha _{5},S+1,m-\alpha _{6},n-1}O_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{5}-\alpha _{6},n-2}^{\left( 0\right) }\right) }+\frac{O_{\alpha _{5},S-1,m-\alpha _{6},n-1}P_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{5}-\alpha _{6},n-2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{1},S,m,n}M_{\alpha _{4},S+1,m-\alpha _{1},n-1}P_{\alpha _{3},S+2,m-\alpha _{1}+\alpha _{4},n}M_{\alpha _{2},S,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{1}+\alpha _{4},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{1}+\alpha _{4}-\alpha _{3},n-1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad +\,\frac{P_{\alpha _{1},S,m,n}N_{\alpha _{4},S-1,m-\alpha _{1},n-1}O_{\alpha _{3},S-2,m-\alpha _{1}+\alpha _{4},n}N_{\alpha _{2},S,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{1}+\alpha _{4},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{1}+\alpha _{4}-\alpha _{3},n-1}^{\left( 0\right) }\right) }\nonumber \\&\quad +\,\frac{M_{\alpha _{4},S,m,n}O_{\alpha _{2},S+1,m+\alpha _{4},n+1}P_{\alpha _{3},S+2,m+\alpha _{4}-\alpha _{2},n}M_{\alpha _{1},S,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S+1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{4}-\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{4}-\alpha _{2}-\alpha _{3},n-1}^{\left( 0\right) }\right) }\nonumber \\&\quad \left. +\,\frac{N_{\alpha _{4},S,m,n}P_{\alpha _{2},S-1,m+\alpha _{4},n+1}O_{\alpha _{3},S-2,m+\alpha _{4}-\alpha _{2},n}N_{\alpha _{1},S,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S-1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{4}-\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{4}-\alpha _{2}-\alpha _{3},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{N_{\alpha _{5},S+1,m+\alpha _{6},n+1}M_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{5}+\alpha _{6},n+2}^{\left( 0\right) }\right) }+\frac{M_{\alpha _{5},S-1,m+\alpha _{6},n+1}N_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{5}+\alpha _{6},n+2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{4},S,m,n}M_{\alpha _{2},S+1,m-\alpha _{4},n-1}N_{\alpha _{3},S+2,m-\alpha _{4}+\alpha _{2},n}O_{\alpha _{1},S,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S+1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{4}+\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{4}+\alpha _{2}+\alpha _{3},n+1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad +\,\frac{P_{\alpha _{4},S,m,n}N_{\alpha _{2},S-1,m-\alpha _{4},n-1}M_{\alpha _{3},S-2,m-\alpha _{4}+\alpha _{2},n}P_{\alpha _{1},S,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S-1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{4}+\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{4}+\alpha _{2}+\alpha _{3},n+1}^{\left( 0\right) }\right) }\nonumber \\&\quad +\,\frac{M_{\alpha _{1},S,m,n}O_{\alpha _{4},S+1,m+\alpha _{1},n+1}N_{\alpha _{3},S+2,m+\alpha _{1}-\alpha _{4},n}O_{\alpha _{2},S,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{1}-\alpha _{4},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{1}-\alpha _{4}+\alpha _{3},n+1}^{\left( 0\right) }\right) }\nonumber \\&\quad \left. +\,\frac{N_{\alpha _{1},S,m,n}P_{\alpha _{4},S-1,m+\alpha _{1},n+1}M_{\alpha _{3},S-2,m+\alpha _{1}-\alpha _{4},n}P_{\alpha _{2},S,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{1}-\alpha _{4},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{1}-\alpha _{4}+\alpha _{3},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{O_{\alpha _{1},S,m,n}O_{\alpha _{2},S+1,m-\alpha _{1},n-1}O_{\alpha _{5},S+1,m-\alpha _{6},n-1}O_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{5}-\alpha _{6},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{3},S+2,m-\alpha _{1}-\alpha _{2},n-2}O_{\alpha _{4},S+2,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S+3,m-\alpha _{1}-\alpha _{2}-\alpha _{3},n-3}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{3},S+2,m-\alpha _{1}-\alpha _{2},n-2}P_{\alpha _{4},S+2,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S+1,m-\alpha _{1}-\alpha _{2}-\alpha _{3},n-3}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{M_{\alpha _{4},S+2,m-\alpha _{1}-\alpha _{2},n-2}M_{\alpha _{3},S+2,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S+3,m-\alpha _{1}-\alpha _{2}+\alpha _{4},n-1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{4},S+2,m-\alpha _{1}-\alpha _{2},n-2}N_{\alpha _{3},S+2,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S+1,m-\alpha _{1}-\alpha _{2}+\alpha _{4},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{P_{\alpha _{1},S,m,n}P_{\alpha _{2},S-1,m-\alpha _{1},n-1}P_{\alpha _{5},S-1,m-\alpha _{6},n-1}P_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{5}-\alpha _{6},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{3},S-2,m-\alpha _{1}-\alpha _{2},n-2}O_{\alpha _{4},S-2,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S-1,m-\alpha _{1}-\alpha _{2}-\alpha _{3},n-3}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{3},S-2,m-\alpha _{1}-\alpha _{2},n-2}P_{\alpha _{4},S-2,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S-3,m-\alpha _{1}-\alpha _{2}-\alpha _{3},n-3}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{M_{\alpha _{4},S-2,m-\alpha _{1}-\alpha _{2},n-2}M_{\alpha _{3},S-2,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S-1,m-\alpha _{1}-\alpha _{2}+\alpha _{4},n-1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{4},S-2,m-\alpha _{1}-\alpha _{2},n-2}N_{\alpha _{3},S-2,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S-3,m-\alpha _{1}-\alpha _{2}+\alpha _{4},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad +\left( \frac{M_{\alpha _{1},S,m,n}M_{\alpha _{2},S+1,m+\alpha _{1},n+1}M_{\alpha _{5},S+1,m+\alpha _{6},n+1}M_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{1}+\alpha _{2},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{5}+\alpha _{6},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{4},S+2,m+\alpha _{1}+\alpha _{2},n+2}O_{\alpha _{3},S+2,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S+3,m+\alpha _{1}+\alpha _{2}-\alpha _{4},n+1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{4},S+2,m+\alpha _{1}+\alpha _{2},n+2}P_{\alpha _{3},S+2,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S+1,m+\alpha _{1}+\alpha _{2}-\alpha _{4},n+1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{M_{\alpha _{3},S+2,m+\alpha _{1}+\alpha _{2},n+2}M_{\alpha _{4},S+2,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S+3,m+\alpha _{1}+\alpha _{2}+\alpha _{3},n+3}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{3},S+2,m+\alpha _{1}+\alpha _{2},n+2}N_{\alpha _{4},S+2,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S+1,m+\alpha _{1}+\alpha _{2}+\alpha _{3},n+3}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{N_{\alpha _{1},S,m,n}N_{\alpha _{2},S-1,m+\alpha _{1},n+1}N_{\alpha _{5},S-1,m+\alpha _{6},n+1}N_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{1}+\alpha _{2},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{5}+\alpha _{6},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{4},S-2,m+\alpha _{1}+\alpha _{2},n+2}O_{\alpha _{3},S-2,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S-1,m+\alpha _{1}+\alpha _{2}-\alpha _{4},n+1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{4},S-2,m+\alpha _{1}+\alpha _{2},n+2}P_{\alpha _{3},S-2,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S-3,m+\alpha _{1}+\alpha _{2}-\alpha _{4},n+1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{M_{\alpha _{3},S-2,m+\alpha _{1}+\alpha _{2},n+2}M_{\alpha _{4},S-2,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S-1,m+\alpha _{1}+\alpha _{2}+\alpha _{3},n+3}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{3},S-2,m+\alpha _{1}+\alpha _{2},n+2}N_{\alpha _{4},S-2,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S-3,m+\alpha _{1}+\alpha _{2}+\alpha _{3},n+3}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{O_{\alpha _{1},S,m,n}O_{\alpha _{2},S+1,m-\alpha _{1},n-1}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{5}-\alpha _{6},n-2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{P_{\alpha _{3},S+2,m-\alpha _{1}-\alpha _{2},n-2}O_{\alpha _{4},S,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S+1,m-\alpha _{1}-\alpha _{2}-\alpha _{3},n-3}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{4},S+2,m-\alpha _{1}-\alpha _{2},n-2}M_{\alpha _{3},S,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S+1,m-\alpha _{1}-\alpha _{2}+\alpha _{4},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{P_{\alpha _{5},S+1,m-\alpha _{6},n-1}O_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }+\frac{O_{\alpha _{5},S-1,m-\alpha _{6},n-1}P_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{P_{\alpha _{1},S,m,n}P_{\alpha _{2},S-1,m-\alpha _{1},n-1}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{5}-\alpha _{6},n-2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{3},S-2,m-\alpha _{1}-\alpha _{2},n-2}P_{\alpha _{4},S,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S-1,m-\alpha _{1}-\alpha _{2}-\alpha _{3},n-3}^{\left( 0\right) }\right) }+\frac{M_{\alpha _{4},S-2,m-\alpha _{1}-\alpha _{2},n-2}N_{\alpha _{3},S,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S-1,m-\alpha _{1}-\alpha _{2}+\alpha _{4},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{P_{\alpha _{5},S+1,m-\alpha _{6},n-1}O_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }+\frac{O_{\alpha _{5},S-1,m-\alpha _{6},n-1}P_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{M_{\alpha _{1},S,m,n}M_{\alpha _{2},S+1,m+\alpha _{1},n+1}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha +\alpha _{2},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{5}+\alpha _{6},n+2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{P_{\alpha _{4},S+2,m+\alpha +\alpha _{2},n+2}O_{\alpha _{3},S,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S+1,m+\alpha _{1}+\alpha _{2}-\alpha _{4},n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{3},S+2,m+\alpha +\alpha _{2},n+2}M_{\alpha _{4},S,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S+1,m+\alpha _{1}+\alpha _{2}+\alpha _{3},n+3}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{N_{\alpha _{5},S+1,m+\alpha _{6},n+1}M_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }+\frac{M_{\alpha _{5},S-1,m+\alpha _{6},n+1}N_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad +\left( \frac{N_{\alpha _{1},S,m,n}N_{\alpha _{2},S-1,m+\alpha _{1},n+1}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha +\alpha _{2},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{5}+\alpha _{6},n+2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{4},S-2,m+\alpha +\alpha _{2},n+2}P_{\alpha _{3},S,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S-1,m+\alpha _{1}+\alpha _{2}-\alpha _{4},n+1}^{\left( 0\right) }\right) }+\frac{M_{\alpha _{3},S-2,m+\alpha +\alpha _{2},n+2}N_{\alpha _{4},S,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S-1,m+\alpha _{1}+\alpha _{2}+\alpha _{3},n+3}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{N_{\alpha _{5},S+1,m+\alpha _{6},n+1}M_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }+\frac{M_{\alpha _{5},S-1,m+\alpha _{6},n+1}N_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{O_{\alpha _{1},S,m,n}M_{\alpha _{5},S+1,m-\alpha _{1},n-1}M_{\alpha _{2},S+1,m-\alpha _{6},n-1}O_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{1}+\alpha _{5},n}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{2}-\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{3},S+2,m-\alpha _{1}+\alpha _{5},n}O_{\alpha _{4},S+2,m+\alpha _{2}-\alpha _{6},n}}{\left( \triangle E_{S+3,m-\alpha _{1}+\alpha _{5}-\alpha _{3},n-1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{3},S+2,m-\alpha _{1}+\alpha _{5},n}P_{\alpha _{4},S+2,m+\alpha _{2}-\alpha _{6},n}}{\left( \triangle E_{S+1,m-\alpha _{1}+\alpha _{5}-\alpha _{3},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{P_{\alpha _{1},S,m,n}N_{\alpha _{5},S-1,m-\alpha _{1},n-1}N_{\alpha _{2},S-1,m-\alpha _{6},n-1}P_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{1}+\alpha _{5},n}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{2}-\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{3},S-2,m-\alpha _{1}+\alpha _{5},n}O_{\alpha _{4},S-2,m+\alpha _{2}-\alpha _{6},n}}{\left( \triangle E_{S-1,m-\alpha _{1}+\alpha _{5}-\alpha _{3},n-1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{3},S-2,m-\alpha _{1}+\alpha _{5},n}P_{\alpha _{4},S-2,m+\alpha _{2}-\alpha _{6},n}}{\left( \triangle E_{S-3,m-\alpha _{1}+\alpha _{5}-\alpha _{3},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{O_{\alpha _{1},S,m,n}M_{\alpha _{6},S+1,m-\alpha _{1},n-1}O_{\alpha _{5},S+1,m+\alpha _{2},n+1}M_{\alpha _{2},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{1}+\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{5}+\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{3},S+2,m-\alpha _{1}+\alpha _{6},n}O_{\alpha _{4},S+2,m-\alpha _{5}+\alpha _{2},n}}{\left( \triangle E_{S+3,m-\alpha _{1}+\alpha _{6}-\alpha _{3},n-1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{3},S+2,m-\alpha _{1}+\alpha _{6},n}P_{\alpha _{4},S+2,m-\alpha _{5}+\alpha _{2},n}}{\left( \triangle E_{S+1,m-\alpha _{1}+\alpha _{6}-\alpha _{3},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{P_{\alpha _{1},S,m,n}N_{\alpha _{6},S-1,m-\alpha _{1},n-1}P_{\alpha _{5},S-1,m+\alpha _{2},n+1}N_{\alpha _{2},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{1}+\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{5}+\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{3},S-2,m-\alpha _{1}+\alpha _{6},n}O_{\alpha _{4},S-2,m-\alpha _{5}+\alpha _{2},n}}{\left( \triangle E_{S-1,m-\alpha _{1}+\alpha _{6}-\alpha _{3},n-1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{3},S-2,m-\alpha _{1}+\alpha _{6},n}P_{\alpha _{4},S-2,m-\alpha _{5}+\alpha _{2},n}}{\left( \triangle E_{S-3,m-\alpha _{1}+\alpha _{6}-\alpha _{3},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{M_{\alpha _{5},S,m,n}O_{\alpha _{2},S+1,m+\alpha _{5},n+1}M_{\alpha _{1},S+1,m-\alpha _{6},n-1}O_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{5},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{5}-\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{1}-\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{3},S+2,m+\alpha _{5}-\alpha _{2},n}O_{\alpha _{4},S+2,m+\alpha _{1}-\alpha _{6},n}}{\left( \triangle E_{S+3,m+\alpha _{5}-\alpha _{2}-\alpha _{3},n-1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{3},S+2,m+\alpha _{5}-\alpha _{2},n}P_{\alpha _{4},S+2,m+\alpha _{1}-\alpha _{6},n}}{\left( \triangle E_{S+1,m+\alpha _{5}-\alpha _{2}-\alpha _{3},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{N_{\alpha _{5},S,m,n}P_{\alpha _{2},S-1,m+\alpha _{5},n+1}N_{\alpha _{1},S-1,m-\alpha _{6},n-1}P_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{5},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{5}-\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{1}-\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{3},S-2,m+\alpha _{5}-\alpha _{2},n}O_{\alpha _{4},S-2,m+\alpha _{1}-\alpha _{6},n}}{\left( \triangle E_{S-1,m+\alpha _{5}-\alpha _{2}-\alpha _{3},n-1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{3},S-2,m+\alpha _{5}-\alpha _{2},n}P_{\alpha _{4},S-2,m+\alpha _{1}-\alpha _{6},n}}{\left( \triangle E_{S-3,m+\alpha _{5}-\alpha _{2}-\alpha _{3},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad +\left( \frac{M_{\alpha _{6},S,m,n}O_{\alpha _{2},S+1,m+\alpha _{6},n+1}O_{\alpha _{5},S+1,m+\alpha _{1},n+1}M_{\alpha _{1},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{6}-\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{5}+\alpha _{1},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{3},S+2,m+\alpha _{6}-\alpha _{2},n}O_{\alpha _{4},S+2,m-\alpha _{5}+\alpha _{1},n}}{\left( \triangle E_{S+3,m+\alpha _{6}-\alpha _{2}-\alpha _{3},n-1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{3},S+2,m+\alpha _{6}-\alpha _{2},n}P_{\alpha _{4},S+2,m-\alpha _{5}+\alpha _{1},n}}{\left( \triangle E_{S+1,m+\alpha _{6}-\alpha _{2}-\alpha _{3},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{N_{\alpha _{6},S,m,n}P_{\alpha _{2},S-1,m+\alpha _{6},n+1}P_{\alpha _{5},S-1,m+\alpha _{1},n+1}N_{\alpha _{1},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{6}-\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{5}+\alpha _{1},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{3},S-2,m+\alpha _{6}-\alpha _{2},n}O_{\alpha _{4},S-2,m-\alpha _{5}+\alpha _{1},n}}{\left( \triangle E_{S-1,m+\alpha _{6}-\alpha _{2}-\alpha _{3},n-1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{3},S-2,m+\alpha _{6}-\alpha _{2},n}P_{\alpha _{4},S-2,m-\alpha _{5}+\alpha _{1},n}}{\left( \triangle E_{S-3,m+\alpha _{6}-\alpha _{2}-\alpha _{3},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{O_{\alpha _{6},S,m,n}M_{\alpha _{2},S+1,m-\alpha _{6},n-1}M_{\alpha _{5},S+1,m-\alpha _{1},n-1}O_{\alpha _{1},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{6}+\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{5}-\alpha _{1},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{3},S+2,m-\alpha _{6}+\alpha _{2},n}M_{\alpha _{4},S+2,m+\alpha _{5}-\alpha _{1},n}}{\left( \triangle E_{S+3,m-\alpha _{6}+\alpha _{2}+\alpha _{3},n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{3},S+2,m-\alpha _{6}+\alpha _{2},n}N_{\alpha _{4},S+2,m+\alpha _{5}-\alpha _{1},n}}{\left( \triangle E_{S+1,m-\alpha _{6}+\alpha _{2}+\alpha _{3},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{P_{\alpha _{6},S,m,n}N_{\alpha _{2},S-1,m-\alpha _{6},n-1}N_{\alpha _{5},S-1,m-\alpha _{1},n-1}P_{\alpha _{1},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{6}+\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{5}-\alpha _{1},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{3},S-2,m-\alpha _{6}+\alpha _{2},n}M_{\alpha _{4},S-2,m+\alpha _{5}-\alpha _{1},n}}{\left( \triangle E_{S-1,m-\alpha _{6}+\alpha _{2}+\alpha _{3},n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{3},S-2,m-\alpha _{6}+\alpha _{2},n}N_{\alpha _{4},S-2,m+\alpha _{5}-\alpha _{1},n}}{\left( \triangle E_{S-3,m-\alpha _{6}+\alpha _{2}+\alpha _{3},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \ +\left( \frac{O_{\alpha _{5},S,m,n}M_{\alpha _{2},S+1,m-\alpha _{5},n-1}O_{\alpha _{1},S+1,m+\alpha _{6},n+1}M_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{5},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{5}+\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{1}+\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{3},S+2,m-\alpha _{5}+\alpha _{2},n}M_{\alpha _{4},S+2,m-\alpha _{1}+\alpha _{6},n}}{\left( \triangle E_{S+3,m-\alpha _{5}+\alpha _{2}+\alpha _{3},n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{3},S+2,m-\alpha _{5}+\alpha _{2},n}N_{\alpha _{4},S+2,m-\alpha _{1}+\alpha _{6},n}}{\left( \triangle E_{S+1,m-\alpha _{5}+\alpha _{2}+\alpha _{3},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{P_{\alpha _{5},S,m,n}N_{\alpha _{2},S-1,m-\alpha _{5},n-1}P_{\alpha _{1},S-1,m+\alpha _{6},n+1}N_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{5},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{5}+\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{1}+\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{3},S-2,m-\alpha _{5}+\alpha _{2},n}M_{\alpha _{4},S-2,m-\alpha _{1}+\alpha _{6},n}}{\left( \triangle E_{S-1,m-\alpha _{5}+\alpha _{2}+\alpha _{3},n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{3},S-2,m-\alpha _{5}+\alpha _{2},n}N_{\alpha _{4},S-2,m-\alpha _{1}+\alpha _{6},n}}{\left( \triangle E_{S-3,m-\alpha _{5}+\alpha _{2}+\alpha _{3},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{M_{\alpha _{1},S,m,n}O_{\alpha _{6},S+1,m+\alpha _{1},n+1}M_{\alpha _{5},S+1,m-\alpha _{2},n-1}O_{\alpha _{2},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{1}-\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{5}-\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{2},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{3},S+2,m+\alpha _{1}-\alpha _{6},n}M_{\alpha _{4},S+2,m+\alpha _{5}-\alpha _{2},n}}{\left( \triangle E_{S+3,m+\alpha _{1}-\alpha _{6}+\alpha _{3},n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{3},S+2,m+\alpha _{1}-\alpha _{6},n}N_{\alpha _{4},S+2,m+\alpha _{5}-\alpha _{2},n}}{\left( \triangle E_{S+1,m+\alpha _{1}-\alpha _{6}+\alpha _{3},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{N_{\alpha _{1},S,m,n}P_{\alpha _{6},S-1,m+\alpha _{1},n+1}N_{\alpha _{5},S-1,m-\alpha _{2},n-1}P_{\alpha _{2},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{1}-\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{5}-\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{2},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad \times \left( \frac{M_{\alpha _{3},S-2,m+\alpha _{1}-\alpha _{6},n}M_{\alpha _{4},S-2,m+\alpha _{5}-\alpha _{2},n}}{\left( \triangle E_{S-1,m+\alpha _{1}-\alpha _{6}+\alpha _{3},n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{3},S-2,m+\alpha _{1}-\alpha _{6},n}N_{\alpha _{4},S-2,m+\alpha _{5}-\alpha _{2},n}}{\left( \triangle E_{S-3,m+\alpha _{1}-\alpha _{6}+\alpha _{3},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{M_{\alpha _{1},S,m,n}O_{\alpha _{5},S+1,m+\alpha _{1},n+1}O_{\alpha _{2},S+1,m+\alpha _{6},n+1}M_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{1}-\alpha _{5},n}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{2}+\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{3},S+2,m+\alpha _{1}-\alpha _{5},n}M_{\alpha _{4},S+2,m-\alpha _{2}+\alpha _{6},n}}{\left( \triangle E_{S+3,m+\alpha _{1}-\alpha _{5}+\alpha _{3},n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{3},S+2,m+\alpha _{1}-\alpha _{5},n}N_{\alpha _{4},S+2,m-\alpha _{2}+\alpha _{6},n}}{\left( \triangle E_{S+1,m+\alpha _{1}-\alpha _{5}+\alpha _{3},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{N_{\alpha _{1},S,m,n}P_{\alpha _{5},S-1,m+\alpha _{1},n+1}P_{\alpha _{2},S-1,m+\alpha _{6},n+1}N_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{1}-\alpha _{5},n}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{2}+\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{3},S-2,m+\alpha _{1}-\alpha _{5},n}M_{\alpha _{4},S-2,m-\alpha _{2}+\alpha _{6},n}}{\left( \triangle E_{S-1,m+\alpha _{1}-\alpha _{5}+\alpha _{3},n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{3},S-2,m+\alpha _{1}-\alpha _{5},n}N_{\alpha _{4},S-2,m-\alpha _{2}+\alpha _{6},n}}{\left( \triangle E_{S-3,m+\alpha _{1}-\alpha _{5}+\alpha _{3},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{O_{\alpha _{1},S,m,n}M_{\alpha _{4},S+1,m-\alpha _{1},n-1}O_{\alpha _{5},S+1,m-\alpha _{6},n-1}O_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{1}+\alpha _{4},n}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{5}-\alpha _{6},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{3},S+2,m-\alpha _{1}+\alpha _{4},n}M_{\alpha _{2},S+2,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S+3,m-\alpha _{1}+\alpha _{4}-\alpha _{3},n-1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{3},S+2,m-\alpha _{1}+\alpha _{4},n}N_{\alpha _{2},S+2,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S+1,m-\alpha _{1}+\alpha _{4}-\alpha _{3},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{P_{\alpha _{1},S,m,n}N_{\alpha _{4},S-1,m-\alpha _{1},n-1}P_{\alpha _{5},S-1,m-\alpha _{6},n-1}P_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{1}+\alpha _{4},n}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{5}-\alpha _{6},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{3},S-2,m-\alpha _{1}+\alpha _{4},n}M_{\alpha _{2},S-2,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S-1,m-\alpha _{1}+\alpha _{4}-\alpha _{3},n-1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{3},S-2,m-\alpha _{1}+\alpha _{4},n}N_{\alpha _{2},S-2,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S-3,m-\alpha _{1}+\alpha _{4}-\alpha _{3},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{M_{\alpha _{1},S,m,n}O_{\alpha _{4},S+1,m+\alpha _{1},n+1}M_{\alpha _{5},S+1,m+\alpha _{6},n+1}M_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{1}-\alpha _{4},n}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{5}+\alpha _{6},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{3},S+2,m+\alpha _{1}-\alpha _{4},n}O_{\alpha _{2},S+2,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S+3,m+\alpha _{1}-\alpha _{4}+\alpha _{3},n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{3},S+2,m+\alpha _{1}-\alpha _{4},n}P_{\alpha _{2},S+2,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S+1,m+\alpha _{1}-\alpha _{4}+\alpha _{3},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{N_{\alpha _{1},S,m,n}P_{\alpha _{4},S-1,m+\alpha _{1},n+1}N_{\alpha _{5},S-1,m+\alpha _{6},n+1}N_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{1}-\alpha _{4},n}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{5}+\alpha _{6},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{3},S-2,m+\alpha _{1}-\alpha _{4},n}O_{\alpha _{2},S-2,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S-1,m+\alpha _{1}-\alpha _{4}+\alpha _{3},n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{3},S-2,m+\alpha _{1}-\alpha _{4},n}P_{\alpha _{2},S-2,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S-3,m+\alpha _{1}-\alpha _{4}+\alpha _{3},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{O_{\alpha _{4},S,m,n}M_{\alpha _{2},S+1,m-\alpha _{4},n-1}M_{\alpha _{5},S+1,m+\alpha _{6},n+1}M_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{4}+\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{5}+\alpha _{6},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{3},S+2,m-\alpha _{4}+\alpha _{2},n}O_{\alpha _{1},S+2,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S+3,m-\alpha _{4}+\alpha _{2}+\alpha _{3},n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{3},S+2,m-\alpha _{4}+\alpha _{2},n}P_{\alpha _{1},S+2,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S+1,m-\alpha _{4}+\alpha _{2}+\alpha _{3},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad +\left( \frac{P_{\alpha _{4},S,m,n}N_{\alpha _{2},S-1,m-\alpha _{4},n-1}N_{\alpha _{5},S-1,m+\alpha _{6},n+1}N_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{4}+\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{5}+\alpha _{6},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{3},S-2,m-\alpha _{4}+\alpha _{2},n}O_{\alpha _{1},S-2,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S-1,m-\alpha _{4}+\alpha _{2}+\alpha _{3},n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{3},S-2,m-\alpha _{4}+\alpha _{2},n}P_{\alpha _{1},S-2,m+\alpha _{5}+\alpha _{6},n+2}}{\left( \triangle E_{S-3,m-\alpha _{4}+\alpha _{2}+\alpha _{3},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{M_{\alpha _{4},S,m,n}O_{\alpha _{2},S+1,m+\alpha _{4},n+1}O_{\alpha _{5},S+1,m-\alpha _{6},n-1}O_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{4}-\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{5}-\alpha _{6},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{3},S+2,m+\alpha _{4}-\alpha _{2},n}M_{\alpha _{1},S+2,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S+3,m+\alpha _{4}-\alpha _{2}-\alpha _{3},n-1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{3},S+2,m+\alpha _{4}-\alpha _{2},n}N_{\alpha _{1},S+2,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S+1,m+\alpha _{4}-\alpha _{2}-\alpha _{3},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{N_{\alpha _{4},S,m,n}P_{\alpha _{2},S-1,m+\alpha _{4},n+1}P_{\alpha _{5},S-1,m-\alpha _{6},n-1}P_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{4}-\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{5}-\alpha _{6},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{3},S-2,m+\alpha _{4}-\alpha _{2},n}M_{\alpha _{1},S-2,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S-1,m+\alpha _{4}-\alpha _{2}-\alpha _{3},n-1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{3},S-2,m+\alpha _{4}-\alpha _{2},n}N_{\alpha _{1},S-2,m-\alpha _{5}-\alpha _{6},n-2}}{\left( \triangle E_{S-3,m+\alpha _{4}-\alpha _{2}-\alpha _{3},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{O_{\alpha _{1},S,m,n}O_{\alpha _{2},S+1,m-\alpha _{1},n-1}O_{\alpha _{5},S+1,m+\alpha _{3},n+1}M_{\alpha _{3},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{5}+\alpha _{3},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{3},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{6},S+2,m-\alpha _{1}-\alpha _{2},n-2}O_{\alpha _{4},S+2,m-\alpha _{5}+\alpha _{3},n}}{\left( \triangle E_{S+3,m-\alpha _{1}-\alpha _{2}+\alpha _{6},n-1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{6},S+2,m-\alpha _{1}-\alpha _{2},n-2}P_{\alpha _{4},S+2,m-\alpha _{5}+\alpha _{3},n}}{\left( \triangle E_{S+1,m-\alpha _{1}-\alpha _{2}+\alpha _{6},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{P_{\alpha _{1},S,m,n}P_{\alpha _{2},S-1,m-\alpha _{1},n-1}P_{\alpha _{5},S-1,m+\alpha _{3},n+1}N_{\alpha _{3},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{5}+\alpha _{3},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{3},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{6},S-2,m-\alpha _{1}-\alpha _{2},n-2}O_{\alpha _{4},S-2,m-\alpha _{5}+\alpha _{3},n}}{\left( \triangle E_{S-1,m-\alpha _{1}-\alpha _{2}+\alpha _{6},n-1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{6},S-2,m-\alpha _{1}-\alpha _{2},n-2}P_{\alpha _{4},S-2,m-\alpha _{5}+\alpha _{3},n}}{\left( \triangle E_{S-3,m-\alpha _{1}-\alpha _{2}+\alpha _{6},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{M_{\alpha _{1},S,m,n}M_{\alpha _{2},S+1,m+\alpha _{1},n+1}M_{\alpha _{5},S+1,m-\alpha _{3},n-1}O_{\alpha _{3},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{1}+\alpha _{2},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{5}-\alpha _{3},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{3},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{6},S+2,m+\alpha _{1}+\alpha _{2},n+2}M_{\alpha _{4},S+2,m+\alpha _{5}-\alpha _{3},n}}{\left( \triangle E_{S+3,m+\alpha _{1}+\alpha _{2}-\alpha _{6},n+1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{6},S+2,m+\alpha _{1}+\alpha _{2},n+2}N_{\alpha _{4},S+2,m+\alpha _{5}-\alpha _{3},n}}{\left( \triangle E_{S+1,m+\alpha _{1}+\alpha _{2}-\alpha _{6},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{N_{\alpha _{1},S,m,n}N_{\alpha _{2},S-1,m+\alpha _{1},n+1}N_{\alpha _{5},S-1,m-\alpha _{3},n-1}P_{\alpha _{3},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{1}+\alpha _{2},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{5}-\alpha _{3},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{3},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{6},S-2,m+\alpha _{1}+\alpha _{2},n+2}M_{\alpha _{4},S-2,m+\alpha _{5}-\alpha _{3},n}}{\left( \triangle E_{S-1,m+\alpha _{1}+\alpha _{2}-\alpha _{6},n+1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{6},S-2,m+\alpha _{1}+\alpha _{2},n+2}N_{\alpha _{4},S-2,m+\alpha _{5}-\alpha _{3},n}}{\left( \triangle E_{S-3,m+\alpha _{1}+\alpha _{2}-\alpha _{6},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{O_{\alpha _{1},S,m,n}O_{\alpha _{2},S+1,m-\alpha _{1},n-1}M_{\alpha _{3},S+1,m-\alpha _{6},n-1}O_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{3}-\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad \times \left( \frac{M_{\alpha _{5},S+2,m-\alpha _{1}-\alpha _{2},n-2}O_{\alpha _{4},S+2,m+\alpha _{3}-\alpha _{6},n}}{\left( \triangle E_{S+3,m-\alpha _{1}-\alpha _{2}+\alpha _{5},n-1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{5},S+2,m-\alpha _{1}-\alpha _{2},n-2}P_{\alpha _{4},S+2,m+\alpha _{3}-\alpha _{6},n}}{\left( \triangle E_{S+1,m-\alpha _{1}-\alpha _{2}+\alpha _{5},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{P_{\alpha _{1},S,m,n}P_{\alpha _{2},S-1,m-\alpha _{1},n-1}N_{\alpha _{3},S-1,m-\alpha _{6},n-1}P_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{3}-\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{5},S-2,m-\alpha _{1}-\alpha _{2},n-2}O_{\alpha _{4},S-2,m+\alpha _{3}-\alpha _{6},n}}{\left( \triangle E_{S-1,m-\alpha _{1}-\alpha _{2}+\alpha _{5},n-1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{5},S-2,m-\alpha _{1}-\alpha _{2},n-2}P_{\alpha _{4},S-2,m+\alpha _{3}-\alpha _{6},n}}{\left( \triangle E_{S-3,m-\alpha _{1}-\alpha _{2}+\alpha _{5},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{M_{\alpha _{1},S,m,n}M_{\alpha _{2},S+1,m+\alpha _{1},n+1}O_{\alpha _{3},S+1,m+\alpha _{6},n+1}M_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{1}+\alpha _{2},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{3}+\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{5},S+2,m+\alpha _{1}+\alpha _{2},n+2}M_{\alpha _{4},S+2,m-\alpha _{3}+\alpha _{6},n}}{\left( \triangle E_{S+3,m+\alpha _{1}+\alpha _{2}-\alpha _{5},n+1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{5},S+2,m+\alpha _{1}+\alpha _{2},n+2}N_{\alpha _{4},S+2,m-\alpha _{3}+\alpha _{6},n}}{\left( \triangle E_{S+1,m+\alpha _{1}+\alpha _{2}-\alpha _{5},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{N_{\alpha _{1},S,m,n}N_{\alpha _{2},S-1,m+\alpha _{1},n+1}P_{\alpha _{3},S-1,m+\alpha _{6},n+1}N_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{1}+\alpha _{2},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{3}+\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{5},S-2,m+\alpha _{1}+\alpha _{2},n+2}M_{\alpha _{4},S-2,m-\alpha _{3}+\alpha _{6},n}}{\left( \triangle E_{S-1,m+\alpha _{1}+\alpha _{2}-\alpha _{5},n+1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{5},S-2,m+\alpha _{1}+\alpha _{2},n+2}N_{\alpha _{4},S-2,m-\alpha _{3}+\alpha _{6},n}}{\left( \triangle E_{S-3,m+\alpha _{1}+\alpha _{2}-\alpha _{5},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad -\left( \frac{O_{\alpha _{1},S,m,n}O_{\alpha _{2},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{1},S,m,n}P_{\alpha _{2},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) }+\frac{M_{\alpha _{1},S,m,n}M_{\alpha _{2},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{N_{\alpha _{1},S,m,n}N_{\alpha _{2},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{3},S,m,n}O_{\alpha _{4},S+1,m-\alpha _{1},n-1}O_{\alpha _{5},S+1,m-\alpha _{6},n-1}O_{\alpha _{6},S,m,n}\delta _{\alpha _{1}+\alpha _{4},\alpha _{5}+\alpha _{6}}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) ^{2}\left( \triangle E_{S+2,m-\alpha _{1}-\alpha _{4},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad +\,\frac{P_{\alpha _{3},S,m,n}P_{\alpha _{4},S-1,m-\alpha _{1},n-1}P_{\alpha _{5},S-1,m-\alpha _{6},n-1}P_{\alpha _{6},S,m,n}\delta _{\alpha _{1}+\alpha _{4},\alpha _{5}+\alpha _{6}}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) ^{2}\left( \triangle E_{S-2,m-\alpha _{1}-\alpha _{4},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\nonumber \\&\quad +\,\frac{M_{\alpha _{3},S,m,n}M_{\alpha _{4},S+1,m+\alpha _{1},n+1}M_{\alpha _{5},S+1,m+\alpha _{6},n+1}M_{\alpha _{6},S,m,n}\delta _{\alpha _{1}+\alpha _{4},\alpha _{5}+\alpha _{6}}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) ^{2}\left( \triangle E_{S+2,m+\alpha _{1}+\alpha _{4},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\nonumber \\&\quad \left. +\,\frac{N_{\alpha _{3},S,m,n}N_{\alpha _{4},S-1,m+\alpha _{1},n+1}N_{\alpha _{5},S-1,m+\alpha _{6},n+1}N_{\alpha _{6},S,m,n}\delta _{\alpha _{1}+\alpha _{4},\alpha _{5}+\alpha _{6}}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) ^{2}\left( \triangle E_{S-2,m+\alpha _{1}+\alpha _{4},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad -\left( \frac{O_{\alpha _{1},S,m,n}O_{\alpha _{2},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{1},S,m,n}P_{\alpha _{2},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{M_{\alpha _{1},S,m,n}M_{\alpha _{2},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{1},S,m,n}N_{\alpha _{2},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad \times \left( \frac{O_{\alpha _{3},S,m,n}P_{\alpha _{4},S+1,m-\alpha _{1},n-1}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) ^{2}\left( \triangle E_{S,m-\alpha _{1}-\alpha _{4},n-2}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{P_{\alpha _{3},S,m,n}O_{\alpha _{4},S-1,m-\alpha _{1},n-1}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) ^{2}\left( \triangle E_{S,m-\alpha _{1}-\alpha _{4},n-2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{P_{\alpha _{5},S+1,m-\alpha _{6},n-1}O_{\alpha _{6},S,m,n}\delta _{\alpha _{1}+\alpha _{4},\alpha _{5}+\alpha _{6}}}{\left( \triangle E_{S+1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{O_{\alpha _{5},S-1,m-\alpha _{6},n-1}P_{\alpha _{6},S,m,n}\delta _{\alpha _{1}+\alpha _{4},\alpha _{5}+\alpha _{6}}}{\left( \triangle E_{S-1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad -\left( \frac{O_{\alpha _{1},S,m,n}O_{\alpha _{2},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{1},S,m,n}P_{\alpha _{2},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{M_{\alpha _{1},S,m,n}M_{\alpha _{2},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{1},S,m,n}N_{\alpha _{2},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{3},S,m,n}N_{\alpha _{4},S+1,m+\alpha _{1},n+1}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) ^{2}\left( \triangle E_{S,m+\alpha _{1}+\alpha _{4},n+2}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{N_{\alpha _{3},S,m,n}M_{\alpha _{4},S-1,m+\alpha _{1},n+1}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) ^{2}\left( \triangle E_{S,m+\alpha _{1}+\alpha _{4},n+2}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{N_{\alpha _{5},S+1,m+\alpha _{6},n+1}M_{\alpha _{6},S,m,n}\delta _{\alpha _{1}+\alpha _{4},\alpha _{5}+\alpha _{6}}}{\left( \triangle E_{S+1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{M_{\alpha _{5},S-1,m+\alpha _{6},n+1}N_{\alpha _{6},S,m,n}\delta _{\alpha _{1}+\alpha _{4},\alpha _{5}+\alpha _{6}}}{\left( \triangle E_{S-1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad -\left( \frac{O_{\alpha _{1},S,m,n}O_{\alpha _{2},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{1},S,m,n}P_{\alpha _{2},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{M_{\alpha _{1},S,m,n}M_{\alpha _{2},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{1},S,m,n}N_{\alpha _{2},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{5},S+1,m-\alpha _{1},n-1}M_{\alpha _{4},S+1,m-\alpha _{6},n-1}O_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+2,m-\alpha _{1}+\alpha _{5},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{M_{\alpha _{6},S+1,m-\alpha _{1},n-1}O_{\alpha _{5},S+1,m+\alpha _{4},n+1}M_{\alpha _{4},S,m,n}}{\left( \triangle E_{S+2,m-\alpha _{1}+\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad \times \left( \frac{O_{\alpha _{3},S,m,n}\delta _{\alpha _{1}+\alpha _{4},\alpha _{5}+\alpha _{6}}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) ^{2}}\right) -\left( \frac{P_{\alpha _{3},S,m,n}\delta _{\alpha _{1}+\alpha _{4},\alpha _{5}+\alpha _{6}}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) ^{2}}\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{1},S,m,n}O_{\alpha _{2},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{1},S,m,n}P_{\alpha _{2},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{M_{\alpha _{1},S,m,n}M_{\alpha _{2},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{1},S,m,n}N_{\alpha _{2},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{N_{\alpha _{5},S-1,m-\alpha _{1},n-1}N_{\alpha _{4},S-1,m-\alpha _{6},n-1}P_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-2,m-\alpha _{1}+\alpha _{5},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{6},n-1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{N_{\alpha _{6},S-1,m-\alpha _{1},n-1}P_{\alpha _{5},S-1,m+\alpha _{4},n+1}N_{\alpha _{4},S,m,n}}{\left( \triangle E_{S-2,m-\alpha _{1}+\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad -\left( \frac{O_{\alpha _{1},S,m,n}O_{\alpha _{2},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{1},S,m,n}P_{\alpha _{2},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{M_{\alpha _{1},S,m,n}M_{\alpha _{2},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{1},S,m,n}N_{\alpha _{2},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{5},S+1,m+\alpha _{1},n+1}O_{\alpha _{4},S+1,m+\alpha _{6},n+1}M_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+2,m+\alpha _{1}-\alpha _{5},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{O_{\alpha _{6},S+1,m+\alpha _{1},n+1}M_{\alpha _{5},S+1,m-\alpha _{4},n-1}O_{\alpha _{4},S,m,n}}{\left( \triangle E_{S+2,m+\alpha _{1}-\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{3},S,m,n}\delta _{\alpha _{1}+\alpha _{4},\alpha _{5}+\alpha _{6}}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) ^{2}}\right) -\left( \frac{N_{\alpha _{3},S,m,n}\delta _{\alpha _{1}+\alpha _{4},\alpha _{5}+\alpha _{6}}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) ^{2}}\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{1},S,m,n}O_{\alpha _{2},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) }+\frac{P_{\alpha _{1},S,m,n}P_{\alpha _{2},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{M_{\alpha _{1},S,m,n}M_{\alpha _{2},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) }+\frac{N_{\alpha _{1},S,m,n}N_{\alpha _{2},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad \times \left( \frac{P_{\alpha _{5},S-1,m+\alpha _{1},n+1}P_{\alpha _{4},S-1,m+\alpha _{6},n+1}N_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-2,m+\alpha _{1}-\alpha _{5},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{6},n+1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad \left. +\,\frac{P_{\alpha _{6},S-1,m+\alpha _{1},n+1}N_{\alpha _{5},S-1,m-\alpha _{4},n-1}P_{\alpha _{4},S,m,n}}{\left( \triangle E_{S-2,m+\alpha _{1}-\alpha _{6},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad -\left( \frac{O_{\alpha _{5},S,m,n}O_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) ^{2}}+\frac{P_{\alpha _{5},S,m,n}P_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) ^{2}}\right. \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad \left. +\,\frac{M_{\alpha _{5},S,m,n}M_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) ^{2}}+\frac{N_{\alpha _{5},S,m,n}N_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) ^{2}}\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{1},S,m,n}O_{\alpha _{4},S,m,n}O_{\alpha _{2},S+1,m-\alpha _{1},n-1}O_{\alpha _{3},S+1,m-\alpha _{4},n-1}\delta _{\alpha _{1},\alpha _{6}}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad +\,\frac{P_{\alpha _{1},S,m,n}P_{\alpha _{4},S,m,n}P_{\alpha _{2},S-1,m-\alpha _{1},n-1}P_{\alpha _{3},S-1,m-\alpha _{4},n-1}\delta _{\alpha _{1},\alpha _{6}}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) }\nonumber \\&\quad +\,\frac{M_{\alpha _{1},S,m,n}M_{\alpha _{4},S,m,n}M_{\alpha _{2},S+1,m+\alpha _{1},n+1}M_{\alpha _{3},S+1,m+\alpha _{4},n+1}\delta _{\alpha _{1},\alpha _{6}}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{1}+\alpha _{2},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\nonumber \\&\quad \left. +\,\frac{N_{\alpha _{1},S,m,n}N_{\alpha _{4},S,m,n}N_{\alpha _{2},S-1,m+\alpha _{1},n+1}N_{\alpha _{3},S-1,m+\alpha _{4},n+1}\delta _{\alpha _{1},\alpha _{6}}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{1}+\alpha _{2},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad -\left( \frac{O_{\alpha _{5},S,m,n}O_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) ^{2}}+\frac{P_{\alpha _{5},S,m,n}P_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) ^{2}}\right. \nonumber \\&\quad \left. +\,\frac{M_{\alpha _{5},S,m,n}M_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) ^{2}}+\frac{N_{\alpha _{5},S,m,n}N_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) ^{2}}\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{1},S,m,n}O_{\alpha _{4},S,m,n}P_{\alpha _{2},S+1,m-\alpha _{1},n-1}P_{\alpha _{3},S+1,m-\alpha _{4},n-1}\delta _{\alpha _{1},\alpha _{6}}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad +\,\frac{O_{\alpha _{1},S,m,n}P_{\alpha _{4},S,m,n}P_{\alpha _{2},S+1,m-\alpha _{1},n-1}O_{\alpha _{3},S-1,m-\alpha _{4},n-1}\delta _{\alpha _{1},\alpha _{6}}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) }\nonumber \\&\quad +\,\frac{O_{\alpha _{1},S,m,n}O_{\alpha _{4},S,m,n}M_{\alpha _{2},S+1,m-\alpha _{1},n-1}M_{\alpha _{3},S+1,m-\alpha _{4},n-1}\delta _{\alpha _{1},\alpha _{6}}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{1}+\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) }\nonumber \\&\quad \left. +\,\frac{O_{\alpha _{1},S,m,n}M_{\alpha _{4},S,m,n}M_{\alpha _{2},S+1,m-\alpha _{1},n-1}O_{\alpha _{3},S+1,m+\alpha _{4},n+1}\delta _{\alpha _{1},\alpha _{6}}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m-\alpha _{1}+\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad -\left( \frac{O_{\alpha _{5},S,m,n}O_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) ^{2}}+\frac{P_{\alpha _{5},S,m,n}P_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) ^{2}}\right. \nonumber \\&\quad \left. +\,\frac{M_{\alpha _{5},S,m,n}M_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) ^{2}}+\frac{N_{\alpha _{5},S,m,n}N_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) ^{2}}\right) \nonumber \\&\quad \times \left( \frac{P_{\alpha _{1},S,m,n}O_{\alpha _{4},S,m,n}O_{\alpha _{2},S-1,m-\alpha _{1},n-1}P_{\alpha _{3},S+1,m-\alpha _{4},n-1}\delta _{\alpha _{1},\alpha _{6}}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad +\,\frac{P_{\alpha _{1},S,m,n}P_{\alpha _{4},S,m,n}O_{\alpha _{2},S-1,m-\alpha _{1},n-1}O_{\alpha _{3},S-1,m-\alpha _{4},n-1}\delta _{\alpha _{1},\alpha _{6}}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S,m-\alpha _{1}-\alpha _{2},n-2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) }\nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad +\,\frac{P_{\alpha _{1},S,m,n}P_{\alpha _{4},S,m,n}N_{\alpha _{2},S-1,m-\alpha _{1},n-1}N_{\alpha _{3},S-1,m-\alpha _{4},n-1}\delta _{\alpha _{1},\alpha _{6}}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{1}+\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) }\nonumber \\&\quad \left. +\,\frac{P_{\alpha _{1},S,m,n}N_{\alpha _{4},S,m,n}N_{\alpha _{2},S-1,m-\alpha _{1},n-1}P_{\alpha _{3},S-1,m+\alpha _{4},n+1}\delta _{\alpha _{1},\alpha _{6}}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m-\alpha _{1}+\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad -\left( \frac{O_{\alpha _{5},S,m,n}O_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) ^{2}}+\frac{P_{\alpha _{5},S,m,n}P_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) ^{2}}\right. \nonumber \\&\quad \left. +\,\frac{M_{\alpha _{5},S,m,n}M_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) ^{2}}+\frac{N_{\alpha _{5},S,m,n}N_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) ^{2}}\right) \nonumber \\&\quad \times \left( \frac{M_{\alpha _{1},S,m,n}O_{\alpha _{4},S,m,n}O_{\alpha _{2},S+1,m+\alpha _{1},n+1}M_{\alpha _{3},S+1,m-\alpha _{4},n-1}\delta _{\alpha _{1},\alpha _{6}}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{1}-\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad +\,\frac{M_{\alpha _{1},S,m,n}M_{\alpha _{4},S,m,n}O_{\alpha _{2},S+1,m+\alpha _{1},n+1}O_{\alpha _{3},S+1,m+\alpha _{4},n+1}\delta _{\alpha _{1},\alpha _{6}}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S+2,m+\alpha _{1}-\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\nonumber \\&\quad +\,\frac{M_{\alpha _{1},S,m,n}M_{\alpha _{4},S,m,n}N_{\alpha _{2},S+1,m+\alpha _{1},n+1}N_{\alpha _{3},S+1,m+\alpha _{4},n+1}\delta _{\alpha _{1},\alpha _{6}}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{1}+\alpha _{2},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\nonumber \\&\quad \left. +\,\frac{M_{\alpha _{1},S,m,n}N_{\alpha _{4},S,m,n}N_{\alpha _{2},S+1,m+\alpha _{1},n+1}M_{\alpha _{3},S-1,m+\alpha _{4},n+1}\delta _{\alpha _{1},\alpha _{6}}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{1}+\alpha _{2},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad -\left( \frac{O_{\alpha _{5},S,m,n}O_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) ^{2}}+\frac{P_{\alpha _{5},S,m,n}P_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) ^{2}}\right. \nonumber \\&\quad \left. +\,\frac{M_{\alpha _{5},S,m,n}M_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) ^{2}}+\frac{N_{\alpha _{5},S,m,n}N_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) ^{2}}\right) \nonumber \\&\quad \times \left( \frac{N_{\alpha _{1},S,m,n}P_{\alpha _{4},S,m,n}P_{\alpha _{2},S-1,m+\alpha _{1},n+1}N_{\alpha _{3},S-1,m-\alpha _{4},n-1}\delta _{\alpha _{1},\alpha _{6}}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{1}-\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m-\alpha _{4},n-1}^{\left( 0\right) }\right) }\right. \nonumber \\&\quad +\,\frac{N_{\alpha _{1},S,m,n}N_{\alpha _{4},S,m,n}P_{\alpha _{2},S-1,m+\alpha _{1},n+1}P_{\alpha _{3},S-1,m+\alpha _{4},n+1}\delta _{\alpha _{1},\alpha _{6}}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S-2,m+\alpha _{1}-\alpha _{2},n}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\nonumber \\&\quad +\,\frac{N_{\alpha _{1},S,m,n}N_{\alpha _{4},S,m,n}M_{\alpha _{2},S-1,m+\alpha _{1},n+1}M_{\alpha _{3},S-1,m+\alpha _{4},n+1}\delta _{\alpha _{1},\alpha _{6}}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{1}+\alpha _{2},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S-1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\nonumber \\&\quad \left. +\,\frac{N_{\alpha _{1},S,m,n}M_{\alpha _{4},S,m,n}M_{\alpha _{2},S-1,m+\alpha _{1},n+1}N_{\alpha _{3},S+1,m+\alpha _{4},n+1}\delta _{\alpha _{1},\alpha _{6}}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) \left( \triangle E_{S,m+\alpha _{1}+\alpha _{2},n+2}^{\left( 0\right) }\right) \left( \triangle E_{S+1,m+\alpha _{4},n+1}^{\left( 0\right) }\right) }\right) \nonumber \\&\quad +\left( \frac{O_{\alpha _{5},S,m,n}O_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) ^{2}}+\frac{P_{\alpha _{5},S,m,n}P_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) ^{2}}\right. \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad \left. +\,\frac{M_{\alpha _{5},S,m,n}M_{\alpha _{6},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) ^{2}}+\frac{N_{\alpha _{5},S,m,n}N_{\alpha _{6},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) ^{2}}\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{4},S,m,n}O_{\alpha _{1},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) ^{2}}+\frac{P_{\alpha _{4},S,m,n}P_{\alpha _{1},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{1},n-1}^{\left( 0\right) }\right) ^{2}}\right. \nonumber \\&\quad \left. +\,\frac{M_{\alpha _{4},S,m,n}M_{\alpha _{1},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) ^{2}}+\frac{N_{\alpha _{4},S,m,n}N_{\alpha _{1},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{1},n+1}^{\left( 0\right) }\right) ^{2}}\right) \nonumber \\&\quad \times \left( \frac{O_{\alpha _{3},S,m,n}O_{\alpha _{2},S,m,n}}{\left( \triangle E_{S+1,m-\alpha _{3},n-1}^{\left( 0\right) }\right) ^{2}}+\frac{P_{\alpha _{3},S,m,n}P_{\alpha _{2},S,m,n}}{\left( \triangle E_{S-1,m-\alpha _{3},n-1}^{\left( 0\right) }\right) ^{2}}\right. \nonumber \\&\quad \left. \left. +\frac{M_{\alpha _{3},S,m,n}M_{\alpha _{2},S,m,n}}{\left( \triangle E_{S+1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) ^{2}}+\frac{N_{\alpha _{3},S,m,n}N_{\alpha _{2},S,m,n}}{\left( \triangle E_{S-1,m+\alpha _{2},n+1}^{\left( 0\right) }\right) ^{2}}\right) \right] _{\begin{array}{c} \alpha _{1}\leftrightarrow \alpha _{2},\\ \alpha _{2}\leftrightarrow \alpha _{3},\\ \alpha _{4}\leftrightarrow \alpha _{5},\\ \alpha _{5}\leftrightarrow \alpha _{6} \end{array}}. \end{aligned}$$
(A.3)