Advertisement

Journal of Low Temperature Physics

, Volume 194, Issue 1–2, pp 14–26 | Cite as

Information Entropy for a Two-Dimensional Rotating Bose–Einstein Condensate

  • R. Kishor KumarEmail author
  • B. Chakrabarti
  • A. Gammal
Article

Abstract

We study the information entropy, order, disorder, and complexity for the two-dimensional (2D) rotating and nonrotating Bose–Einstein condensates. The choice of our system is a complete theoretical laboratory where the complexity is controlled by the two-body contact interaction strength and the rotation frequency (\(\varOmega \)) of the harmonic trap. The 2D nonrotating condensate shows the complexity of the category I where the disorder-order transition is triggered by the interaction strength. In the rotating condensates, \(\varOmega \) is chosen as the disorder parameter when the interaction strength is fixed. With respect to \(\varOmega \), the complexity shifts between maximum and minimum confirm the existence of category II complexity in the rotating condensate. Also, we consider the interaction strength as the disorder parameter when \(\varOmega \) is unchanged and complexity as a function of interaction strength exhibits category III complexity. The present work also includes the calculation of upper bound and lower bound of entropy for 2D quantum systems.

Keywords

Bose–Einstein condensate Vortex lattice Information entropy 

Notes

Acknowledgements

RKK, BC, and AG acknowledge the support by FAPESP of Brazil under Grants 2014/01668-8, 2016/19622-0 and 2016/17612-7, respectively. AG also acknowledges the support by CNPq of Brazil.

References

  1. 1.
    S.R. Gadre, S.B. Sears, J. Chem. Phys. 71, 432 (1979)Google Scholar
  2. 2.
    S.B. Sears, S.R. Gadre, J. Chem. Phys. 75, 4626 (1981)ADSCrossRefGoogle Scholar
  3. 3.
    T. Koga, M. Morita, J. Chem. Phys. 79, 1933 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    N.L. Guevara, R.P. Sagar, R.O. Esquivel, J. Chem. Phys. 119, 7030 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    N.L. Guevara, R.P. Sagar, R.O. Esquivel, J. Chem. Phys. 122, 084101 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    R.P. Sagar, N.L. Guevara, J. Chem. Phys. 123, 044108 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    K.D. Sen, J. Chem. Phys. 123, 074110 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    P. Lambropoulos, D. Petrosyan, Fundamentals of Quantum Optics and Quantum Information (Springer, Berlin, 2007)Google Scholar
  9. 9.
    S.E. Massen, C.P. Panos, Phys. Lett. A 246, 530 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    S.E. Massen, C.P. Panos, Phys. Lett. A 280, 65 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    S.E. Massen, ChC Moustakidis, C.P. Panos, Phys. Lett. A 299, 131–136 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    I. Bialynicki-Birula, J. Mycielski, Commun. Math. Phys. 44, 129 (1975)ADSCrossRefGoogle Scholar
  13. 13.
    S.R. Gadre, S.B. Sears, S.J. Chakravorty, R.D. Bendale, Phys. Rev. A 32, 2602 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    S.R. Gadre, R.D. Bendale, Phys. Rev. A 36, 1932 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    KCh. Chatzisavvas, ChC Moustakidis, C.P. Panos, J. Chem. Phys. 123, 174111 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    A. Saha, B. Talukdar, S. Chatterjee, Phys. A 474, 370 (2017)CrossRefGoogle Scholar
  17. 17.
    G.A. Sekh, A. Saha, B. Talukdar, Phys. Lett. A 382, 315–320 (2018)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J.S. Shiner, M. Davison, P.T. Landsberg, Phys. Rev. E 59, 1459 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    T. Sriraman, B. Chakrabarti, A. Trombettoni, P. Muruganandam, J. Chem. Phys. 147, 044304 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    C.P. Panos, Phys. Lett. A 289, 287 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    P.T. Landsberg, J.S. Shiner, Phys. Lett. A 245, 228 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    M.B. Kim, A. Svidzinsky, G.S. Agarwal, M.O. Scully, Phys. Rev. A 97, 013605 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    A.L. Fetter, A.A. Svidzinsky, J. Phys. Condens. Matter 13, R135 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    A.L. Fetter, A.A. Svidzinsky, Int. J. Mod. Phys. B 19, 1835 (2005)CrossRefGoogle Scholar
  25. 25.
    A.L. Fetter, Rev. Mod. Phys. 81, 647 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002)Google Scholar
  27. 27.
    N.P. Proukakis, D.W. Snoke, P.B. Littlewood, Universal Themes of Bose–Einstein Condensation (Cambridge University Press, Cambridge, 2017)CrossRefzbMATHGoogle Scholar
  28. 28.
    M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 83, 2498 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    A.E. Leanhardt, A. Görlitz, A.P. Chikkatur, D. Kielpinski, Y. Shin, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 89, 190403 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    Y.J. Lin, R.L. Compton, K. Jimenez-Garcia, J.V. Porto, I.B. Spielman, Nature 462, 628 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Phys. Rev. Lett. 84, 806 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    K.W. Madison, F. Chevy, V. Bretin, J. Dalibard, Phys. Rev. Lett. 86, 4443 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    D.L. Feder, C.W. Clark, B.I. Schneider, Phys. Rev. Lett. 82, 4956 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    D.L. Feder, C.W. Clark, B.I. Schneider, Phys. Rev. A 61, 011601(R) (1999)ADSCrossRefGoogle Scholar
  35. 35.
    R.K. Kumar, P. Muruganandam, Eur. Phys. J. D 68, 289 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    R.K. Kumar, T. Sriraman, H. Fabrelli, P. Muruganandam, A. Gammal, J. Phys. B At. Mol. Opt. Phys. 49, 155301 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    R.K. Kumar, L. Tomio, B.A. Malomed, A. Gammal, Phys. Rev. A 96, 063624 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    W. Bao, H. Wang, P.A. Markowich, Commun. Math. Sci. 3, 55 (2005)CrossRefGoogle Scholar
  39. 39.
    M.C. Tsatsos, A.U.J. Lode, J. Low Temp. Phys. 181, 171 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    C.P. Panos, KCh. Chatzisavvas, ChC Moustakidis, E.G. Kyrkou, Phys. Lett. A 363, 78 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    R.G. Catalán, J. Garay, R. López-Ruiz, Phys. Rev. E 66, 011102 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    J.C. Angulo, J. Antolín, J. Chem. Phys. 128, 164109 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    R. López-Ruiz, H.L. Mancini, X. Calbet, Phys. Lett. A 209, 321 (1995)ADSCrossRefGoogle Scholar
  44. 44.
    C.P. Panos et al., in Statistical complexity: applications in electronic structure, ed. by K.D. Sen (Springer, Dordrecht, 2011)Google Scholar
  45. 45.
    A. Gammal, T. Frederico, L. Tomio, Phys. Rev. A 64, 055602 (2001)ADSCrossRefGoogle Scholar
  46. 46.
    A. Gammal, L. Tomio, T. Frederico, Phys. Rev. A 66, 043619 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    M. Brtka, A. Gammal, L. Tomio, Phys. Lett. A 359, 339 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    P. Muruganandam, S.K. Adhikari, Comput. Phys. Commun. 180, 1888 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    D. Vudragović, I. Vidanović, A. Bala ž, P. Muruganandam, S.K. Adhikari, Comput. Phys. Commun. 183, 2021 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    H.A. Van der Vorst, J. Sci. Stat. Comput. 13(2), 631 (1992)CrossRefGoogle Scholar
  51. 51.
    J. Yang, J. Comput. Phys. 228, 7007 (2009)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    D.A. Butts, D.S. Rokhsar, Nature 397, 327 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations