Advertisement

Journal of Low Temperature Physics

, Volume 194, Issue 1–2, pp 1–13 | Cite as

Non-stationary Thermal Electromotive Force Generated by Third Sound

  • S. I. ShevchenkoEmail author
  • A. M. Konstantinov
Article

Abstract

It is predicted that oscillations of temperature during propagation of third sound in a thin superfluid film cause appearance of an alternating electric field in the surrounding space (a peculiar non-stationary thermoelectric effect). The magnitude of this field depends significantly on the substrate type and the method of its coating. It is shown that the differential thermal EMF (the ratio of electric potential amplitude to the film temperature amplitude) can exceed such one in metals and reach \(10^{-4}\) V/K.

Keywords

Third sound Polarization Thermal electrical effect 

References

  1. 1.
    K.R. Atkins, Phys. Rev. 113, 962 (1959)ADSCrossRefGoogle Scholar
  2. 2.
    I. Rudnick, R.S. Kagiwida, J.C. Fraser, Phys. Rev. Lett. 20, 430 (1968)ADSCrossRefGoogle Scholar
  3. 3.
    P.R. Antoniewicz, Phys. Rev. Lett. 32, 1424 (1974)ADSCrossRefGoogle Scholar
  4. 4.
    B. Linder, R.A. Kromhout, Phys. Rev. B 13, 1532 (1976)ADSCrossRefGoogle Scholar
  5. 5.
    E. Zaremba, Phys. Lett. 57A, 156 (1976)ADSCrossRefGoogle Scholar
  6. 6.
    G.I. Salistra, JETP 60, 984 (1984)Google Scholar
  7. 7.
    YuS Barash, V.L. Ginzburg, Ukr. Fiz. Zh. 143, 345 (1984)Google Scholar
  8. 8.
    S.I. Shevchenko, A.S. Rukin, JETP Lett. 90, 42 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    S.I. Shevchenko, A.S. Rukin, Low Temp. Phys. 36, 146 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    I.E. Dzyaloshinskii, JETP 3, 977 (1956)Google Scholar
  11. 11.
    G.I. Salistra, Ukr. Fiz. Zh. 21, 444 (1976)Google Scholar
  12. 12.
    V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Relativistic Quantum Theory: Part 1 (Pergamon, Oxford, 1971), pp. 289–294Google Scholar
  13. 13.
    E.M. Lifshitz, L.P. Pitaevskii, Theory of the Condensed State: Part 2 (Butterworth-Heinemann, Oxford, 1980), pp. 314–319Google Scholar
  14. 14.
    YuS Barash, Van der Waals Forces (Nauka, Moscow, 1998). [in Russian]Google Scholar
  15. 15.
    S.I. Shevchenko, A.M. Konstantinov, JETP Lett. 104, 489 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    V. Ambegaokar, B.I. Halperin, D.R. Nelson, E.D. Siggia, Phys. Rev. B 21, 1806 (1980)ADSCrossRefGoogle Scholar
  17. 17.
    S. Teitel, J. Low Temp. Phys 46, 77 (1982)ADSCrossRefGoogle Scholar
  18. 18.
    D.J. Bergman, Phys. Rev. 188, 370 (1969)ADSCrossRefGoogle Scholar
  19. 19.
    P.W. Anderson, Phys. Lett. 29A, 563 (1969)ADSCrossRefGoogle Scholar
  20. 20.
    David S. Hyman, Marlan O. Scully, Phys. Rev. 186, 231 (1969)ADSCrossRefGoogle Scholar
  21. 21.
    I.M. Khalatnikov, An Introduction to the Theory of Superfluidity (Perseus Publishing, Cambridge, 2000)Google Scholar
  22. 22.
    J.H. Scholtz, E.O. McLean, I. Rudnik, Phys. Rev. Lett. 32, 147 (1974)ADSCrossRefGoogle Scholar
  23. 23.
    A.A. Abrikosov, Fundamentals of the Theory of Metals (North Holland, Amsterdam, 1988)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of UkraineKharkivUkraine

Personalised recommendations