Advertisement

Equilibrium of Methane and Carbon Dioxide Hydrates Below the Freezing Point of Water: Literature Review and Modeling

  • Ehsan Heidaryan
  • Maria Dolores Robustillo Fuentes
  • Pedro de Alcântara Pessôa Filho
Article
  • 65 Downloads

Abstract

This work presents a review of literature data of methane and carbon dioxide hydrate equilibrium at low temperatures. Constants of Arrhenius-type equation accurately determined for the mentioned lines which allow calculating the hydrate equilibrium pressure at any temperature below the quadruple point for both systems contain ice or supercooled water. Through intersection analysis, new accurate quadruple points were determined. Interpretations based on flash calculations by high accurate equations of states shown enthalpies of clathrate formation/dissociation, for equilibrium below quadruple point, lead to the similarity of Clapeyron and Clausius–Clapeyron approaches. Based on equality of equilibrium conditions at the quadruple point, new hydration numbers were calculated. Gamma–phi approach through high accurate equations of states of GERG-2008 and CG for the prediction of VHIw three-phase equilibrium line was evaluated. Commercial packages of Multiflash and PVTsim and open-source codes of CSMGem and CSMHYD were used to model the phenomena.

Keywords

Methane Carbon dioxide Hydrate Low temperatures 

Notes

Acknowledgements

The authors appreciate the financial support of FAPESP (processes 2014/02140-7, 2014/25740-0, 2016/09341-3 and 2017/22589-7) and CNPq.

References

  1. 1.
    E.D. Sloan Jr., C. Koh, Clathrate Hydrates of Natural Gases (CRC Press, Boca Raton, 2007)CrossRefGoogle Scholar
  2. 2.
    U. Hiroki, H. Akiba, S. Akatsu, R. Ohmura, New J. Chem. 39, 8254–8262 (2015)CrossRefGoogle Scholar
  3. 3.
    J.M. Brooks, H.B. Cox, W.R. Bryant, M.C. Kennicutt, R.G. Mann, T.J. McDonald, Org. Geochem. 10, 221–234 (1986)CrossRefGoogle Scholar
  4. 4.
    M. Kastner, K.A. Kvenvolden, T.D. Lorenson, Earth Planet. Sci. Lett. 156, 173–183 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    O. Mousis, J.L. Lunine, K.E. Mandt, E. Schindhelm, H.A. Weaver, S.A. Stern, J.H. Waite, R. Gladstone, A. Moudens, Icarus 225, 856–861 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    D. Ambuehl, M.E. Madden, Icarus 234, 45–52 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    R. Llopis, E. Torrella, R. Cabello, D. Sanchez, Int. J. Refrig. 35, 810–816 (2012)CrossRefGoogle Scholar
  8. 8.
    A. McCulloch, J. Fluor. Chem. 123, 21–29 (2003)CrossRefGoogle Scholar
  9. 9.
    W. Wu, B. Wong, W. Shi, X. Li, Renew. Sustain. Energy Rev. 31, 681–707 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Javanmardi, Kh Nasrifar, S.H. Najibi, M. Moshfeghian, Appl. Therm. Eng. 25, 1708–1723 (2005)CrossRefGoogle Scholar
  11. 11.
    Z.R. Chong, S.H.B. Yang, P. Babu, P. Linga, X.S. Li, Appl. Energy 162, 1633–1652 (2016)CrossRefGoogle Scholar
  12. 12.
    R.H. James, P. Bousquet, I. Bussmann, M. Haeckel, R. Kipfer, I. Leifer, H. Niemann, I. Ostrovsky, J. Piskozub, G. Rehder, T. Treude, Limnol. Oceanogr. 61, S283–S299 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    C. Hope, K. Schaefer, Nat. Clim. Change 6, 56–59 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    J.H. van der Waals, J.C. Platteeuw, Adv. Chem. Phys. 2, 1–57 (1959)Google Scholar
  15. 15.
    A.L. Ballard, E.D. Sloan Jr., Fluid Phase Equilib. 194, 371–383 (2002)CrossRefGoogle Scholar
  16. 16.
    O. Kunz, W. Wagner, J. Chem. Eng. Data 57, 3032–3091 (2012)CrossRefGoogle Scholar
  17. 17.
    J. Gernert, R. Span, J. Chem. Thermodyn. 93, 274–293 (2016)CrossRefGoogle Scholar
  18. 18.
    Calsep, Method documentation PVTsim 20, Calsep product (2011)Google Scholar
  19. 19.
    Infochem, User guide for multiflash models and physical properties (Infochem Computer Services Ltd., London, 2015)Google Scholar
  20. 20.
    A.L. Ballard, E.D. Sloan, Fluid Phase Equilib. 218, 15–31 (2004)CrossRefGoogle Scholar
  21. 21.
  22. 22.
    S. Arrhenius, Z. Phys. Chem. 4, 96–116 (1889)Google Scholar
  23. 23.
    M.C. Clapeyron, Journal de l’École polytechnique 23, 153–190 (1834)Google Scholar
  24. 24.
    R. Clausius, Ann. Phys. 155, 368–397 (1850)CrossRefGoogle Scholar
  25. 25.
    O.L. Roberts, E.R. Brownscombe, L.S. Howe, Oil Gas J. 39, 37–43 (1940)Google Scholar
  26. 26.
    W.M. Deaton, E.M. Frost, Gas Hydrates and Their Relation to the Operation of Natural-Gas Pipe Lines, vol. 8, Monograph (United States Bureau of Mines, American Gas Association, Washington, 1946)Google Scholar
  27. 27.
    A.H. Delsemme, A. Wenger, Planet. Space Sci. 18, 709–715 (1970)ADSCrossRefGoogle Scholar
  28. 28.
    B.J. Falabella, M. Vanpee, Ind. Eng. Chem. Fundam. 13, 228–231 (1974)CrossRefGoogle Scholar
  29. 29.
    T.Y. Makogon, E.D. Sloan Jr., J. Chem. Eng. Data 39, 351–353 (1994)CrossRefGoogle Scholar
  30. 30.
    S.O. Yang, Measurements and predictions of phase equilibria for water + natural gas components in hydrate-forming conditions. Ph.D. Dissertation, Korea University (2000)Google Scholar
  31. 31.
    A. Hachikubo, A. Miyamoto, K. Hyakutake, K. Abe, H. Shoji, in: Y.H. Mori (ed.), Proceedings of Fourth International Conference on Gas Hydrates, Yokohama (2002)Google Scholar
  32. 32.
    K. Yasuda, R. Ohmura, J. Chem. Eng. Data 53, 2182–2188 (2008)CrossRefGoogle Scholar
  33. 33.
    A.H. Mohammadi, D. Richon, Ind. Eng. Chem. Res. 49, 3976–3979 (2010)CrossRefGoogle Scholar
  34. 34.
    N. Fray, U. Marboeuf, O. Brissaud, B. Schmitt, J. Chem. Eng. Data 55, 5101–5108 (2010)CrossRefGoogle Scholar
  35. 35.
    H.D. Nagashima, R. Ohmura, J. Chem. Thermodyn. 102, 252–256 (2016)CrossRefGoogle Scholar
  36. 36.
    V.A. Istomin, V.G. Kwon, V.A. Durov, Gas Ind. Rus. 4, 13–15 (2006)Google Scholar
  37. 37.
    V.P. Melnikov, A.N. Nesterov, A.M. Reshetnikov, A.G. Zavodovsky, Chem. Eng. Sci. 64, 1160–1166 (2009)CrossRefGoogle Scholar
  38. 38.
    S.D. Larson, Phase studies of the two-component carbon dioxide-water system, involving the carbon dioxide hydrate. Ph.D. Dissertation, University of Illinois (1955)Google Scholar
  39. 39.
    S.L. Miller, W.D. Smythe, Science 170, 531–533 (1970)ADSCrossRefGoogle Scholar
  40. 40.
    A.W. Adamson, B.R. Jones, J. Colloid Interface Sci. 37, 831–835 (1971)ADSCrossRefGoogle Scholar
  41. 41.
    B.J. Falabella, A study of natural gas hydrates. Ph.D. Dissertation, University of Massachusetts, 1975Google Scholar
  42. 42.
    B. Schmitt, La surface de la glace: structure, dynamique et interactions—implications astrophysique. Ph.D. Dissertation, University of Grenoble (1986)Google Scholar
  43. 43.
    M. Wendland, H. Hasse, G. Maurer, J. Chem. Eng. Data 44, 901–906 (1999)CrossRefGoogle Scholar
  44. 44.
    A.H. Mohammadi, D. Richon, J. Chem. Eng. Data 54, 279–281 (2009)CrossRefGoogle Scholar
  45. 45.
    H.D. Nagashima, N. Fukushima, R. Ohmura, Fluid Phase Equilib. 413, 53–56 (2016)CrossRefGoogle Scholar
  46. 46.
    V.P. Melnikov, A.N. Nesterov, A.M. Reshetnikov, V.A. Istomin, Chem. Eng. Sci. 66, 73–77 (2010)CrossRefGoogle Scholar
  47. 47.
    Y. Nema, R. Ohmura, I. Senaha, K. Yasuda, Fluid Phase Equilib. 441, 49–53 (2017)CrossRefGoogle Scholar
  48. 48.
    G.J. Chen, T.M. Guo, Chem. Eng. J. 71, 145–151 (1998)CrossRefGoogle Scholar
  49. 49.
    I. Langmuir, J. Am. Chem. Soc. 30, 1361–1403 (1918)CrossRefGoogle Scholar
  50. 50.
    I.V. Yakoumis, G.M. Kontogeorgis, E.C. Voutsas, E.M. Hendriks, D.P. Tassios, Ind. Eng. Chem. Res. 37, 4175–4182 (1998)CrossRefGoogle Scholar
  51. 51.
    A. Martín, J. Phys. Chem. B 114, 9602–9607 (2010)CrossRefGoogle Scholar
  52. 52.
    A. Asiaee, S. Raeissi, A. Shariati, J. Chem. Thermodyn. 43, 822–827 (2011)CrossRefGoogle Scholar
  53. 53.
    I.N. Tsimpanogiannis, N.I. Papadimitriou, A.K. Stubos, Mol. Phys. 110, 1213–1221 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    W.R. Parrish, J.M. Prausnitz, Ind. Eng. Chem. Proc. Des. Dev. 11, 26–35 (1972)CrossRefGoogle Scholar
  55. 55.
    G.D. Holder, G. Corbin, K.D. Papadopoulos, Ind. Eng. Chem. Fundam. 19, 282–286 (1980)CrossRefGoogle Scholar
  56. 56.
    J.B. Klauda, S.I. Sandler, Ind. Eng. Chem. Res. 39, 3377–3386 (2000)CrossRefGoogle Scholar
  57. 57.
    S.Y. Lee, G.D. Holder, AIChE J. 48, 161–167 (2002)CrossRefGoogle Scholar
  58. 58.
    J.B. Klauda, S.I. Sandler, Chem. Eng. Sci. 58, 27–41 (2003)CrossRefGoogle Scholar
  59. 59.
    A.A. Bandyopadhyay, J.B. Klauda, Ind. Eng. Chem. Res. 50, 148–157 (2011)CrossRefGoogle Scholar
  60. 60.
    G. Soave, Chem. Eng. Sci. 27, 1197–1203 (1972)CrossRefGoogle Scholar
  61. 61.
    V. Vinš, A. Jäger, J. Hrubý, R. Span, Fluid Phase Equilib. 435, 104–117 (2017)CrossRefGoogle Scholar
  62. 62.
    G.K. Anderson, J. Chem. Thermodyn. 36, 1119–1127 (2004)CrossRefGoogle Scholar
  63. 63.
    G.K. Anderson, J. Chem. Thermodyn. 35, 1171–1183 (2003)CrossRefGoogle Scholar
  64. 64.
    G. Armstrong, Nat. Chem. 2, 256 (2010)CrossRefGoogle Scholar
  65. 65.
    M.S. Selim, E.D. Sloan, AIChE J. 35, 1049–1052 (1989)CrossRefGoogle Scholar
  66. 66.
    A. Jarrahian, E. Heidaryan, J. Nat. Gas Sci. Eng. 20, 50–57 (2014)CrossRefGoogle Scholar
  67. 67.
    E. Heidaryan, A. Jarrahian, Can. J. Chem. Eng. 91, 1183–1189 (2013)CrossRefGoogle Scholar
  68. 68.
    H.-J. Ng, D.B. Robinson, AIChE J. 23, 477–482 (1977)CrossRefGoogle Scholar
  69. 69.
    E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST reference fluid thermodynamic and transport properties—REFPROP 9.1 (2013)Google Scholar
  70. 70.
    R. Span, T. Eckermann, S. Herrig, S. Hielscher, A. Jäger, M. Thol, Thermodynamic reference and engineering data—TREND 3.0 (2016)Google Scholar
  71. 71.
    U. Setzmann, W. Wagner, J. Phys. Chem. Ref. Data 20, 1061–1155 (1991)ADSCrossRefGoogle Scholar
  72. 72.
    R. Span, W. Wagner, J. Phys. Chem. Ref. Data 25, 1509–1596 (1996)ADSCrossRefGoogle Scholar
  73. 73.
    J.H. Yoon, Y. Yamamoto, T. Komai, H. Haneda, T. Kawamura, Ind. Eng. Chem. Res. 42, 1111–1114 (2003)CrossRefGoogle Scholar
  74. 74.
    Y.P. Handa, J. Chem. Thermodyn. 18, 915–921 (1986)CrossRefGoogle Scholar
  75. 75.
    D. Avlonitis, AIChE J. 51, 258–1273 (2005)CrossRefGoogle Scholar
  76. 76.
    M.B. Rydzy, J.M. Schicks, R. Naumann, J. Erzinger, J. Phys. Chem. B 111, 9539–9545 (2007)CrossRefGoogle Scholar
  77. 77.
    R. Feistel, W. Wagner, J. Phys. Chem. Ref. Data 35, 1021–1047 (2006)ADSCrossRefGoogle Scholar
  78. 78.
    A. Gupta, J. Lachance, E.D. Sloan, C.A. Koh, Chem. Eng. Sci. 63, 5848–5853 (2008)CrossRefGoogle Scholar
  79. 79.
    T. Uchida, Waste Manage. 17, 343–352 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ehsan Heidaryan
    • 1
    • 2
  • Maria Dolores Robustillo Fuentes
    • 2
  • Pedro de Alcântara Pessôa Filho
    • 2
  1. 1.Department of Chemical EngineeringImperial College LondonLondonUK
  2. 2.Department of Chemical Engineering, Engineering SchoolUniversity of São Paulo (USP)São PauloBrazil

Personalised recommendations