Advertisement

Design, Fabrication and Measurement of Pyramid-Type Antireflective Structures on Columnar Crystal Silicon Lens for Millimeter-Wave Astronomy

  • T. Nitta
  • Y. Sekimoto
  • T. Hasebe
  • K. Noda
  • S. Sekiguchi
  • M. Nagai
  • S. Hattori
  • Y. Murayama
  • H. Matsuo
  • A. Dominjon
  • W. Shan
  • M. Naruse
  • N. Kuno
  • N. Nakai
Article
  • 17 Downloads

Abstract

Pyramid-type antireflective subwavelength structures for large-diameter (\(> 30\hbox { cm}\)) silicon lenses are promising for broadband astronomical observations. The refractive index and dielectric loss tangent of the lens material, columnar crystal silicon which is manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd., were measured at around 30 K using a Martin–Puplett-type Fourier transform spectrometer. The measured refractive index and dielectric loss tangent between 200 GHz and 1.6 THz were \(\sim \) 3.42 and 1–\(5 \times 10^{-4}\), respectively. Three different pyramid-type structures with a period of \(265\hbox { }\upmu \hbox {m}\) and depth of \(600\hbox { }\upmu \hbox {m}\) were simulated to obtain their reflectance using an electromagnetic field simulator, HFSS. The structures were fabricated on both sides of a 100-mm-diameter plane-convex lens made of columnar crystal silicon with a 150-mm radius of curvature using a metal-bonded V-shaped blade and a dedicated three-axis machine. The fabrication errors in the period and depth were less than \(10\hbox { }\upmu \hbox {m}\). The reflectance of the lens flat surface was measured using a vector network analyzer to be between \(-8\) and \(-17\) dB in the range of 110–170 GHz, which was consistent with the result from the simulation.

Keywords

Silicon lens Antireflection coating Subwavelength structure 

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP25247022, JP26247019 and JP17H01115 and was achieved using the grant of Joint Development Research (FY2014 and FY2017) supported by the Research Coordination Committee, National Astronomical Observatory of Japan (NAOJ) and National Institutes of Natural Sciences (NINS). This work was also supported by Tokyo metropolitan government supporting funds for enhancement of competitiveness of small enterprises. The authors would like to thank Mitsubishi Materials Electronic Chemicals Co., Ltd. for providing the columnar crystal silicon samples.

References

  1. 1.
    J.D. Vieira et al., Astrophys. J. 719, 763–783 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    J.D. Vieira et al., Nature 495, 344–347 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    C.M. Casey, D. Narayanan, A. Cooray, Phys. Rep. 541, 45–161 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    C.-C. Chen et al., Astrophys. J. 820, 82 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    P.A.R. Ade et al., Astrophys. J. 806, 206 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    A. Suzuki et al., J. Low Temp. Phys. 184, 805–810 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    R.J. Thornton et al., Astrophys. J. Suppl. Ser. 227, 21 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Inoue et al., Proc. SPIE 9914, 99141I (2016)CrossRefGoogle Scholar
  9. 9.
    J.A. Grayson et al., Proc. SPIE 9914, 99140S (2016)CrossRefGoogle Scholar
  10. 10.
    A.J. Gatesman, J. Waldman, M. Ji, C. Musante, S. Yngvesson, IEEE Microw. Guid. Wave Lett. 10, 264–266 (2000)CrossRefGoogle Scholar
  11. 11.
    H.-W. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Golftsman, B. Voronov, E. Gershenzon, Infrared Phys. Technol. 42, 41–47 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    D. Rosen, A. Suzuki, B. Keating, W. Krantz, A.T. Lee, E. Quealy, P.L. Richards, P. Siritanasak, W. Walker, Appl. Opt. 52, 8102–8105 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Inoue, T. Matsumura, M. Hazumi, A.T. Lee, T. Okamura, A. Suzuki, T. Tomaru, H. Yamaguchi, Appl. Opt. 53, 1727–1733 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    O. Jeong, A. Lee, C. Raum, A. Suzuki, J. Low Temp. Phys. 184, 621–626 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    T. Nitta et al., J. Low Temp. Phys. 176, 677–683 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    A. Brahm et al., Appl. Opt. 53, 2886–2891 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    T. Matsumura et al., Appl. Opt. 55, 3502–3509 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    R. Datta et al., J. Low Temp. Phys. 184, 568–575 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    K. Young et al., J. Appl. Phys. 121, 213103 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    R. Datta et al., Appl. Opt. 52, 8747–8758 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    T. Nitta et al., IEEE Trans. THz Sci. Technol. 7, 295–301 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Biber, J. Richter, S. Martius, L.-P. Schmidt, in 33rd Eur. Microwave Conference, pp. 1115 – 1118 (2003)Google Scholar
  23. 23.
  24. 24.
    H. Matsuo, A. Sakamoto, S. Matsushita, Publ. Astron. Soc. Jpn. 50, 359–366 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    E.V. Loewenstein, D.R. Smith, Appl. Opt. 10, 577–583 (1971)ADSCrossRefGoogle Scholar
  26. 26.
    J. Krupka, J. Breeze, A. Centeno, N. Alford, T. Claussen, L. Jensen, IEEE Trans. Microw. Theory Tech. 54, 3995–4001 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    D.H. Raguin, G.M. Morris, Appl. Opt. 32, 1154–1167 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    C. Brückner et al., Opt. Express 17, 3063–3077 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    ANSYS, HFSS 15.0, High Frequency Electromagnetic Field Simulation (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • T. Nitta
    • 1
    • 7
  • Y. Sekimoto
    • 2
    • 3
    • 5
  • T. Hasebe
    • 2
    • 3
  • K. Noda
    • 4
  • S. Sekiguchi
    • 3
    • 5
  • M. Nagai
    • 3
  • S. Hattori
    • 1
  • Y. Murayama
    • 1
  • H. Matsuo
    • 3
  • A. Dominjon
    • 3
  • W. Shan
    • 3
  • M. Naruse
    • 6
  • N. Kuno
    • 1
    • 7
  • N. Nakai
    • 1
    • 7
  1. 1.Division of Physics, Faculty of Pure and Applied SciencesUniversity of TsukubaTsukubaJapan
  2. 2.Institute of Space and Astronautical Science (ISAS)Japan Aerospace Exploration Agency (JAXA)Sagamihara CityJapan
  3. 3.Advanced Technology CenterNational Astronomical Observatory of JapanMitakaJapan
  4. 4.Oshima Prototype Engineering Co.Musashino-shiJapan
  5. 5.Department of Astronomy, Graduate School of ScienceThe University of TokyoBunkyo-kuJapan
  6. 6.Graduate School of Science and EngineeringSaitama UniversitySakura-kuJapan
  7. 7.Tomonaga Center for the History of the UniverseUniversity of TsukubaTsukubaJapan

Personalised recommendations