Journal of Low Temperature Physics

, Volume 193, Issue 1–2, pp 74–84 | Cite as

Magnetic Properties of Co-doped Bismuth Oxide (δ-Bi2O3) at Low Temperature

  • Yasin PolatEmail author
  • Mehmet Arı
  • Yılmaz Dağdemir


The (Bi2O3)1−x−y(Gd2O3)x(Lu2O3)y material compounds were prepared by using the solid-state reaction technique under normal air conditions. The heat treatments of the ternary samples were performed firstly at 800 °C for 48 h and then at 750 °C for 100 h. The structural, morphological, and magnetic properties of the materials were characterized by X-ray powder diffraction (XRD), scanning electron microscope, and a Quantum Design PPMS-9T system, respectively. From the XRD results, it was found that the phases of all of the samples consisted of the fluorite-type face-centered cubic δ-Bi2O3 phase. It was observed that the microstructure of the samples is uniformly distributed on the samples’ surface. The temperature dependence of magnetization (M–T) measurements showed that the magnetization rose sharply at the critical temperature. The calculated critical temperature values vary from 22.19 to 56.61 K for the samples. All of the samples displayed the paramagnetic behavior. The paramagnetic behavior started from 300 K to very low temperature which varied from 22.19 to 56.61 K. The coercive rise on the magnetization below 22.19 K or 56.61 K with decreasing temperature causes a phase transformation in the δ-Bi2O3 system. This sudden increment was considered as a ferromagnetic or ferrimagnetic phase transition.


Co-doped bismuth oxide δ-Bi2O3 Solid-state reaction technique Magnetization Ferromagnetic Ferrimagnetic 



This work was supported by the Research Fund of Erciyes University, Turkey, under Project Number: FBA-2015-5321.


  1. 1.
    B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 401, 682–684 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    H. Kim, C. Jin, S. Park, W.I. Lee, I.J. Chin, C.M. Lee, Structure and optical properties of Bi2S3 and Bi2O3 nanostructures synthesized via thermal evaporation and thermal oxidation routes. Chem. Eng. J. 215–216, 151–160 (2013)CrossRefGoogle Scholar
  3. 3.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    K. Gurunathan, Photocatalytic hydrogen production using transition metal ions-doped-Bi2O3 semiconductor particles. Int. J. Hydrogen Energy 29, 933–940 (2003)CrossRefGoogle Scholar
  5. 5.
    W.M. Sears, The gas-sensing properties of sintered bismuth iron molybdate catalyst. Sens Actuators 19, 351–370 (1989)CrossRefGoogle Scholar
  6. 6.
    S. Sanna, V. Esposito, J.W. Andreasen, J. Hjelm, W. Zhang, T. Kasama, S.B. Simonsen, M. Christensen, S. Linderoth, N. Pryds, Enhancement of the chemical stability in confined δ-Bi2O3. Nat. Mater. 14, 500–504 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells. Science 334, 935–939 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Polat, M. Arı, Y. Dağdemir, Phase stability, thermal, electrical and structural properties of (Bi2O3)1−x−y(Sm2O3)x(CeO2)y electrolytes for solid oxide fuel cells. Phase Transit. 90, 387–398 (2017)CrossRefGoogle Scholar
  9. 9.
    Y. Polat, H. Akalan, M. Arı, Thermo-electrical and structural properties of Gd2O3 and Lu2O3 double-doped Bi2O3. Int. J. Hydrogen Energy 42, 614–622 (2017)CrossRefGoogle Scholar
  10. 10.
    Y. Polat, Y. Dağdemir, M. Arı, Structural, thermal, electrical and morphological characterization of (Bi2O3)1−x−y(Sm2O3)x(Yb2O3)y nanostructures prepared by solid state synthesis. Curr. Appl. Phys. 16, 1588–1596 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    N. Cornei, N. Tancret, F. Abraham, O. Mentré, New epsilon-Bi2O3 metastable polymorph. Inorg. Chem. Commun. 45, 4886–4888 (2006)CrossRefGoogle Scholar
  12. 12.
    A.F. Gualtieri, S. Immovilli, M. Prudenziati, Powder X-ray diffraction data for the new polymorphic compound ω-Bi2O3. Powder Diffr. 12, 90–92 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    M. Drache, P. Roussel, J.P. Wignacourt, Structures and oxide mobility in Bi–Ln–O materials: heritage of Bi2O3. Chem. Rev. 107, 80–96 (2007)CrossRefGoogle Scholar
  14. 14.
    S.E. Lin, W.-C.J. Wei, Long-term degradation of Ta2O5-doped Bi2O3 systems. J. Eur. Ceram. Soc. 31, 3081–3086 (2011)CrossRefGoogle Scholar
  15. 15.
    A. Basu, A.W. Brinkman, T. Hashemi, NTC characteristics of bismuth based ceramic at high temperature. Int. J. Inorg. Mater. 3, 1219–1221 (2001)CrossRefGoogle Scholar
  16. 16.
    A. Harwig, Z. Anorg, On the structure of bismuth sesquioxide: the α-, β-, γ- and δ-phase. Allg. Chem. 444, 151–166 (1978)CrossRefGoogle Scholar
  17. 17.
    J.W. Medernach, R.L. Snyder, Powder diffraction patterns an structures of the bismuth oxide. J. Am. Ceram. Soc. 61, 494–497 (1978)CrossRefGoogle Scholar
  18. 18.
    S. Chehab, P. Conflant, M. Drache, J.C. Boivin, G. McDonald, Solid state reaction pathways of sillenite-phase formation studied by high-temperature X-ray diffractometry and differential thermal analysis. Mater. Res. Bull. 38, 875–897 (2003)CrossRefGoogle Scholar
  19. 19.
    O. Turkoglu, M. Arı, M. Soylak, I. Belenli, Synthesis and properties of b type Bi(III) 2–2x Dy(II) 2x O3- xx solid solution. J. Mater. Sci. 40, 2951–2957 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Polat, Comments on “Reduced band gap & charge recombination rate in Se doped a-Bi2O3 leads to enhanced photo electrochemical and photocatalytic performance: theoretical & experimental insight” [Int J Hydrogen Energy 42 (2017) 20638e20648]. Int. J. Hydrogen Energy 43, 468–469 (2018)CrossRefGoogle Scholar
  21. 21.
    G.H. Zhong, J.L. Wang, Z. Zeng, The doping effects in δ-Bi2O3 oxide ionic conductor. Phys. Status Solidi B 12, 2737–2742 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    H.A. Harwig, A.G. Gerards, Electrical properties of the α, β, γ and δ phases of bismuth sesquioxide. J. Solid State Chem. 26, 265–274 (1978)ADSCrossRefGoogle Scholar
  23. 23.
    D.W. Jung, K.L. Duncan, E.D. Wachsman, Effect of total dopant concentration and dopant ratio on conductivity of (DyO1.5)x–(WO3)y–(BiO1.5)1−x−y. Acta Mater. 58, 355–363 (2010)CrossRefGoogle Scholar
  24. 24.
    K. Vasundhara, S.N. Achary, S.J. Patwe, A.K. Sahu, N. Manoj, A.K. Tyagi, Structural and oxide ion conductivity studies on Yb1−xBixO1.5 (0.00 ≤ x ≥ 0.50) composites. J. Alloys Compd. 596, 151–157 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Arasteh, A. Maghsoudipour, M. Alizadeh, A. Nemati, Effect of Y2O3 and Er2O3 co-dopants on phase stabilization of bismuth oxide. Ceram. Int. 37, 3451–3455 (2011)CrossRefGoogle Scholar
  26. 26.
    T. Chou, L.-D. Liu, W.C.J. Wei, Phase stability and electric conductivity of Er2O3–Nb2O5 co-doped Bi2O3 electrolyte. J. Eur. Ceram. Soc. 31, 3087–3094 (2011)CrossRefGoogle Scholar
  27. 27.
    S.-F. Wang, Y.-F. Hsu, W.-C. Tsai, H.-C. Lu, The phase stability and electrical conductivity of Bi2O3 ceramics stabilized by Co-dopants. J. Power Sources 218, 106–112 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    R. Li, Q. Zhen, M. Drache, A. Rubbens, R.-N. Vannier, Preparation mechanism of (Bi2O3)0.75 (Dy2O3)0.25 nano-crystalline solid electrolyte. J. Alloys Compd. 494, 446–450 (2010)CrossRefGoogle Scholar
  29. 29.
    R. Kayalı, M.K. Özen, N.Ç. Bezir, A. Evcin, Effect of concentration of Sm2O3and Yb2O3 and synthesizing temperature on electrical and crystal structure of (Bi2O3)1−x−y(Sm2O3)x(Yb2O3)y electrolytes fabricated for IT-SOFCs. Phys. B 489, 39–44 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    S. Bhattacharya, A. Roychowdhury, V. Tiwari, A. Prasad, R.S. Ningthoujam, A.B. Patel, D. Das, S. Nayar, Effect of biomimetic templates on the magnetostructural properties of Fe3O4 nanoparticles. RSC Adv. 5, 13777–13786 (2015)CrossRefGoogle Scholar
  31. 31.
    Z. Zhu, D. Gao, C. Dong, G. Yang, J. Zhang, J. Zhang, Z. Shi, H. Gao, H. Luo, D. Xue, Coexistence of ferromagnetism and superconductivity in YBCO nanoparticles. Phys. Chem. Chem. Phys. 14, 3859–3863 (2012)CrossRefGoogle Scholar
  32. 32.
    H. Gencer, T. Izgi, N. Bayri, M. Pektas, V.S. Kolat, S. Atalay, Structural, magnetic and magnetocaloric properties of Pr0.68Ca0.32–xBixMnO3 (x = 0, 0.1, 0.18, 0.26 and 0.32) compounds. J. Supercond. Nov. Magn. 29, 2443–2450 (2016)CrossRefGoogle Scholar
  33. 33.
    N. Jaiswal, B. Gupta, D. Kumar, O. Parkash, Effect of addition of erbium stabilized bismuth oxide on the conductivity of lanthanum doped ceria solid electrolyte for IT-SOFCs. J. Alloys Compds. 633, 174–182 (2015)CrossRefGoogle Scholar
  34. 34.
    Z.-C. Li, H. Zhang, B. Bergman, Synthesis and characterization of nanostructured Bi2O3-doped cerium oxides fabricated by PVA polymerization process. Ceram. Int. 34, 1949–1953 (2008)CrossRefGoogle Scholar
  35. 35.
    M. Prekajski, Z.D. Mitrović, M. Radović, B. Babić, J. Pantić, A. Kremenović, B. Matović, Nanocrystaline solid solution CeO2–Bi2O3. J. Eur. Ceram. Soc. 32, 1983–1987 (2012)CrossRefGoogle Scholar
  36. 36.
    İ. Taşçıoğlu, M. Arı, İ. Uslu, S. Koçyiğit, Y. Dağdemir, V. Çorumlu, Ş. Altındal, Temperature dependent conductivity and structural properties of sol–gel prepared holmium doped Bi2O3 nanoceramic powder. Ceram. Int. 38, 6455–6460 (2012)CrossRefGoogle Scholar
  37. 37.
    T. Takahashi, T. Esaka, H. Iwahara, High oxide ion conduction in the sintered oxides of the system Bi2O3–Gd2O3. J. Appl. Electrochem. 5, 197–202 (1975)CrossRefGoogle Scholar
  38. 38.
    Y. Ito, T. Mukoyama, H. Mori, K. Koto, The structure of Gd2O3 doped Bi2O3 at a low temperature. Solid State Ionics 79, 81–83 (1995)CrossRefGoogle Scholar
  39. 39.
    S. Ekhelikar, G.K. Bichile, Synthesis and structural characterization of (Bi2O3)1−x (Y2O3)x and (Bi2O3)1−x (Gd2O3)x solid solutions. Bull. Mater. Sci. 27, 19–22 (2004)CrossRefGoogle Scholar
  40. 40.
    N.O. Kalaycioglu, E. Çırçır, Synthesis, characterization and oxide ionic conductivity of binary β-(Bi2O3)1−x(Lu2O3)x system. J. Chin. Chem. Soc. 59, 28–31 (2012)CrossRefGoogle Scholar
  41. 41.
    Enamullah, Y. Venkateswara, S. Gupta, M.R. Varma, P. Singh, K.G. Suresh, A. Alam, Electronic structure, magnetism, and antisite disorder in CoFeCrGe and CoMnCrAl quaternary Heusler alloys. Phys. Rev. B 92(22), 224413–224417 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    M. Andrés-Vergés, M. del Puerto Morales, S. Veintemillas-Verdaguer, F.J. Palomares, C.J. Serna, Core/shell magnetite/bismuth oxide nanocrystals with tunable size, colloidal, and magnetic properties. Chem. Mater. 24(2), 319–324 (2012)CrossRefGoogle Scholar
  43. 43.
    G. Kirat, M.A. Aksan, Observation of magnetic behavior at low temperature in the Mg2Al4Si5O18 system. J. Alloys Compd. 577, 556–559 (2013)CrossRefGoogle Scholar
  44. 44.
    A. Kumar, K.L. Yadav, Enhanced magnetodielectric properties of single-phase Bi0.95−xLa0.05LuxFeO3 multiferroic system. J. Alloys Compd. 554, 138–141 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Science and Technology Application and Research CenterNevşehir Hacı Bektaş Veli UniversityNevşehirTurkey
  2. 2.Department of PhysicsErciyes UniversityKayseriTurkey

Personalised recommendations