Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 328–336 | Cite as

Advanced ACTPol TES Device Parameters and Noise Performance in Fielded Arrays

  • Kevin T. Crowley
  • Jason E. Austermann
  • Steve K. Choi
  • Shannon M. Duff
  • Patricio A. Gallardo
  • Shuay-Pwu Patty Ho
  • Johannes Hubmayr
  • Brian J. Koopman
  • Federico Nati
  • Michael D. Niemack
  • Maria Salatino
  • Sara M. Simon
  • Suzanne T. Staggs
  • Jason R. Stevens
  • Joel N. Ullom
  • Eve M. Vavagiakis
  • Edward J. Wollack
Article

Abstract

The Advanced ACTPol (AdvACT) upgrade to the Atacama Cosmology Telescope (ACT) features arrays of aluminum manganese transition-edge sensors (TESes) optimized for ground-based observations of the cosmic microwave background (CMB). Array testing shows highly responsive detectors with anticipated in-band noise performance under optical loading. We report on TES parameters measured with impedance data taken on a subset of TESes. We then compare modeled noise spectral densities to measurements. We find excess noise at frequencies around 100 Hz, nearly outside of the signal band of CMB measurements. In addition, we describe full-array noise measurements in the laboratory and in the field for two new AdvACT mid-frequency arrays, sensitive at bands centered on 90 and 150 GHz, and data for the high-frequency array (150/230 GHz) as deployed.

Keywords

Cosmic microwave background Transition-edge sensor Detector modeling Noise performance TES parameters 

Notes

Acknowledgements

This work was supported by the US National Science Foundation through award 1440226. The development of multichroic detectors and lenses was supported by NASA grants NNX13AE56G and NNX14AB58G. The work of KTC and BJK was supported by NASA Space Technology Research Fellowship awards.

References

  1. 1.
    R. Thornton, P.A.R. Ade, S. Aiola et al., The atacama cosmology telescope: the polarization-sensitive ACTPol instrument. Astrophys. J. Suppl. 227, 21 (2016).  https://doi.org/10.3847/1538-4365/227/2/21 ADSCrossRefGoogle Scholar
  2. 2.
    F. De Bernardis, J.R. Stevens, M. Hasselfield et al., Survey strategy optimization for the atacama cosmology telescope. Proc. SPIE 9910, 991014 (2016).  https://doi.org/10.1117/12.2232824 CrossRefGoogle Scholar
  3. 3.
    S.W. Henderson, R. Allison, J. Austermann et al., Advanced ACTPol cryogenic detector arrays and readout. J. Low-Temp. Phys. 184, 772–779 (2016).  https://doi.org/10.1007/s10909-016-1575-z ADSCrossRefGoogle Scholar
  4. 4.
    S.M. Simon, J. Austermann, J.A. Beall et al., The design and characterization of wideband spline-profiled feedhorns for Advanced ACTPol. Proc. SPIE 9914, 991416 (2016).  https://doi.org/10.1117/12.2233603 CrossRefGoogle Scholar
  5. 5.
    K.D. Irwin, G.C. Hilton, Cryogenic particle detection ch. Transition Edge Sensors. (Springer, Berlin 2005), pp. 63–150.  https://doi.org/10.1007/b12169.
  6. 6.
    S.M. Duff, J.E. Austermann, J.A. Beall et al., Advanced ACTPol multichroic polarimeter array fabrication process for 150 mm wafers. J. Low-Temp. Phys. 184, 634–641 (2016).  https://doi.org/10.1007/s10909-016-1576-y ADSCrossRefGoogle Scholar
  7. 7.
    E.M. George, J.E. Austermann, J.A. Beall et al., A study of Al-Mn transition-edge sensor engineering for stability. J. Low-Temp. Phys. 176, 383–91 (2014).  https://doi.org/10.1007/s10909-013-0994-3 ADSCrossRefGoogle Scholar
  8. 8.
    S.W. Henderson, J.R. Stevens, M. Amiri et al., Readout of two-kilopixel transition-edge sensor arrays for Advanced ACTPol. Proc. SPIE 9914, 99141G (2016).  https://doi.org/10.1117/12.2233895 CrossRefGoogle Scholar
  9. 9.
    E.S. Battistelli, M. Amiri, B. Burger et al., Functional Description of Read-out Electronics for Time-Domain Multiplexed Bolometers for Millimeter and Sub-Millimeter Astronomy. J. Low-Temp. Phys. 151, 908–14 (2008).  https://doi.org/10.1007/s10909-008-9772-z ADSCrossRefGoogle Scholar
  10. 10.
    S.K. Choi et al. Characterization of the mid frequency arrays for advanced ACTPol. J. Low Temp. Phys. this special issue (2018)Google Scholar
  11. 11.
    M.A. Lindeman, K.A. Barger, D.E. Brandl et al., Complex impedance measurements of calorimeters and bolometers: Correction for stray impedances. Rev. Sci. Instrum. 78, 043105 (2007).  https://doi.org/10.1063/1.2723066 ADSCrossRefGoogle Scholar
  12. 12.
    Y. Zhao, Characterization of transition edge sensors for the millimeter bolometer array camera on the atacama cosmology telescope. In Ph.D thesis, Princeton University, Princeton (2008)Google Scholar
  13. 13.
    J.C. Mather, Bolometer noise: nonequilibrium theory. Appl. Opt. 21, 1125–9 (1982).  https://doi.org/10.1364/AO.21.001125 ADSCrossRefGoogle Scholar
  14. 14.
    K.T. Crowley, S.K. Choi, J. Kuan et al., Characterization of AlMn TES impedance, noise, and optical efficiency in the first 150 mm multichroic array for Advanced ACTPol. Proc. SPIE 9914, 991431 (2016).  https://doi.org/10.1117/12.2231999 CrossRefGoogle Scholar
  15. 15.
    N. Jethava, J.N. Ullom, K.D. Irwin et al., Dependence of excess noise on the partial derivatives of resistance in superconducting transition edge sensors. AIP Conf. Proc. 1185, 31–33 (2009).  https://doi.org/10.1063/1.3292343 ADSCrossRefGoogle Scholar
  16. 16.
    J.M. Lamarre, Photon noise in photometric instruments at far-infrared and submillimeter wavelengths. Appl. Opt. 25, 870–6 (1986).  https://doi.org/10.1364/AO.25.000870 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kevin T. Crowley
    • 1
  • Jason E. Austermann
    • 3
  • Steve K. Choi
    • 1
  • Shannon M. Duff
    • 3
  • Patricio A. Gallardo
    • 2
  • Shuay-Pwu Patty Ho
    • 1
  • Johannes Hubmayr
    • 3
  • Brian J. Koopman
    • 2
  • Federico Nati
    • 6
  • Michael D. Niemack
    • 2
  • Maria Salatino
    • 1
  • Sara M. Simon
    • 4
  • Suzanne T. Staggs
    • 1
  • Jason R. Stevens
    • 2
  • Joel N. Ullom
    • 3
  • Eve M. Vavagiakis
    • 2
  • Edward J. Wollack
    • 5
  1. 1.Department of PhysicsPrinceton UniversityPrincetonUSA
  2. 2.Department of PhysicsCornell UniversityIthacaUSA
  3. 3.Quantum Sensors GroupNISTBoulderUSA
  4. 4.Department of PhysicsUniversity of MichiganAnn ArborUSA
  5. 5.NASA Goddard Space Flight CenterGreenbeltUSA
  6. 6.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations