Journal of Low Temperature Physics

, Volume 193, Issue 1–2, pp 48–59 | Cite as

Impurity, LO Phonon and Thickness Effects on the Transition of an Electron in a Gaussian Confinement Potential DQD with a Magnetic Field

  • Wuyunqimuge
  • Wei Xin
  • Guo-Sheng Wang
  • EerdunchaoluEmail author


We chose the harmonic potential and Gaussian potential to describe the electronic transverse and longitudinal confinement potential in the disk quantum dot (QD) with the hydrogen-like impurity and the thickness effect, respectively, and the eigenvalues and eigenfunctions of the ground and first exited states of the electron are derived by means of the Lee–Low–Pines–Pekar variational method. On this basis, a two-level system was formed, and the electron quantum transition affected by a magnetic field is discussed in terms of the two-level system theory. The results indicate the Gaussian confinement potential reflects the real confinement potential more accurately than the parabolic one; the influence of the thickness of the QD on the electron quantum transition is interesting and significant and cannot be ignored; the electron transition probability \( Q \) is influenced significantly by some physical quantities, such as the strength of the electron–phonon coupling \( \alpha \), the magnetic-field cyclotron frequency \( \omega_{\text{c}} \), the barrier height \( V_{0} \) and confinement range \( L \) of the Gaussian confinement potential. The corresponding results will be helpful to explore the pathway and method to manipulate the transport and optical properties of the QD.


Disk quantum dot Hydrogen-like impurity Thickness effect Gaussian confinement potential Quantum transition 



This work was supported by the Open Research Fund of The State Key Laboratory of Superlattices and Microstructures (No. CHJG200701), the National Nature Science Foundation of Hebei Province, China (Grant No. E2013407119), and the Items of Scientific Research of Hebei Normal University of Science and Technology.


  1. 1.
    X.M. Dou, Y.U. Ying, B.Q. Sun, D.S. Jiang, H.Q. Ni, Z.C. Niu, Chin. Phys. Lett. 29, 104203 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    H.Y. Wang, D. Su, S. Yang, X.M. Dou, H.J. Zhu, D.S. Jiang, H.Q. Ni, Z.H. Niu, C.L. Zhao, B.Q. Sun, Chin. Phys. Lett. 32, 107804 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    S. Yang, X.M. Dou, Y. Yu, H.Q. Ni, Z.C. Niu, D.S. Jiang, B.Q. Suu, Chin. Phys. Lett. 32, 077804 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Y.Z. Xue, Z.S. Chen, H.Q. Ni, Z.C. Niu, D.S. Jiang, X.M. Dou, B.Q. Sun, Chin. Phys. B 26, 084202 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    B.X. Li, J. Zheng, F. Chi, Chin. Phys. Lett. 29, 107302 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    L. Shi, Z.W. Yan, Eur. Phys. J. B 86, 244 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    B.X. Li, J. Zheng, F. Chi, Chin. Phys. Lett. 31, 057302 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Z.Y. Feng, Z.W. Yan, Chin. Phys. B 25, 107804 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    W.P. Li, J.L. Xiao, J.W. Yin, Y.F. Yu, Z.W. Wang, Chin. Phys. B 19, 047102 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Y.J. Chen, J.L. Xiao, J. Low Temp. Phys. 170, 60 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    X.F. Bai, W. Xin, H.W. Yin, E. Chaolu, Int. J. Theor. Phys. 56, 1673 (2017)CrossRefGoogle Scholar
  12. 12.
    Y. Sun, Z.H. Ding, J.L. Xiao, J. Electron. Mater. 46, 439 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    J. Gu, J.J. Liang, Acta Phys. Sin. 54, 5335 (2005). (in Chinese) Google Scholar
  14. 14.
    A.J. Fotue, S.C. Kenfack, M. Tiotsop, N. Issofa, M.P. Tabue Djemmo, A.V. Wirngo, H. Fotsin, L.C. Fai, Eur. Phys. J. Plus. 131, 75 (2016)CrossRefGoogle Scholar
  15. 15.
    L. Jacak, P. Hawrylak, A. Wojs, Quantum Dots (Springer, Berlin, 1998)CrossRefGoogle Scholar
  16. 16.
    J. Adamowski, M. Sobkowicz, B. Szafran, S. Bednarek, Phys. Rev. B 62, 4234 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    W.F. Xie, Solid State Commun. 127, 401 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    G.Q. Hai, F.M. Peeters, J.T. Devreese, Phys. Rev. B 47, 10358 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    S.D. Liang, C.Y. Chen, S.C. Jiang, D.L. Lin, Phys. Rev. B 53, 15459 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    J.L. Xiao, Int. J. Theor. Phys. 55, 147 (2016)CrossRefGoogle Scholar
  21. 21.
    R. Khordad, S. Goudarzi, H. Bahramiyan, Indian J. Phys. 90, 659 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    T.D. Lee, F.M. Low, S.D. Pines, Phys. Rev. 90, 297 (1953)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    L.D. Landau, S.I. Pekar, Zh Eksp, Teor. Fiz. 18, 419 (1948)Google Scholar
  24. 24.
    S.I. Pekar, M.F. Deigen, Zh Eksp, Teor. Fiz. 18, 481 (1948)Google Scholar
  25. 25.
    S.I. Pekar, Untersuchungen über die Elektronen-theorie der Kristalle (Akademie Verlag, Berlin, 1954)zbMATHGoogle Scholar
  26. 26.
    D.J. Griffiths, Introduction to Quantum Mechanics (Pearson Education, Inc., Upper Saddle River, 2005)Google Scholar
  27. 27.
    E. Chaolu, J.L. Xiao, J. Phys. Soc. Jpn. 76, 044702 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    S.S. Li, X.J. Kong, J. Phys, Condens. Matter 4, 4815 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    S.S. Li, J.B. Xia, J. Appl. Phys. 101, 093716 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    S.S. Li, J.B. Xia, Phys. Lett. A 366, 120 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    J.J. Huybrechts, Phys. C Solid State Phys. 9, L211 (1976)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wuyunqimuge
    • 1
  • Wei Xin
    • 2
  • Guo-Sheng Wang
    • 2
  • Eerdunchaolu
    • 2
    Email author
  1. 1.College of Physics and Electronic InformationInner Mongolia University for NationalitiesTongliaoChina
  2. 2.Institute of Condensed Matter PhysicsHebei Normal University of Science and TechnologyQinhuangdaoChina

Personalised recommendations