Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 380–386 | Cite as

Thin-Film Thermal Conductivity Measurements Using Superconducting Nanowires

  • J. P. Allmaras
  • A. G. Kozorezov
  • A. D. Beyer
  • F. Marsili
  • R. M. Briggs
  • M. D. Shaw
Article
  • 106 Downloads

Abstract

We present a simple experimental scheme for estimating the cryogenic thermal transport properties of thin films using superconducting nanowires. In a parallel array of nanowires, the heat from one nanowire in the normal state changes the local temperature around adjacent nanowires, reducing their switching current. Calibration of this change in switching current as a function of bath temperature provides an estimate of the temperature as a function of displacement from the heater. This provides a method of determining the contribution of substrate heat transport to the cooling time of superconducting nanowire single-photon detectors. Understanding this process is necessary for successful electrothermal modeling of superconducting nanowire systems.

Keywords

Thermometry Superconductor Nanowire 

Notes

Acknowledgements

This work was supported by a NASA Space Technology Research Fellowship (Grant No. NNX16AM54H). AGK, FM, and MDS acknowledge financial support from DARPA. This work was carried out at the Jet Propulsion Laboratory under contract with the National Aeronautics and Space Administration.

References

  1. 1.
    G.N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, Appl. Phys. Lett. 79, 705–707 (2001).  https://doi.org/10.1063/1.1388868 ADSCrossRefGoogle Scholar
  2. 2.
    F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirin, S.W. Nam, Nat. Photon. 7, 210–214 (2013).  https://doi.org/10.1038/nphoton.2013.13 ADSCrossRefGoogle Scholar
  3. 3.
    B.A. Korzh, Q-Y. Zhao, S. Frasca, J.P. Allmaras, T.M. Autry, E.A. Bersin, M. Colangelo, G.M. Crouch, A.E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J.D. Rezac, M.J. Stevens, E.E. Wollman, D. Zhu, P.D. Hale, K.L. Silverman, R. P. Mirin, S.W. Nam, M.D. Shaw, K.K. Berggren. (2018). arXiv:1804.06839
  4. 4.
    J.D. Cohen, S.M. Meenehan, G.S. MacCabe, S. Groblacher, A.H. Safavi-Naeini, F. Marsili, M.D. Shaw, O. Painter, Nature 520, 522–525 (2015).  https://doi.org/10.1038/nature14349 ADSCrossRefGoogle Scholar
  5. 5.
    L.K. Shalm et al., Phys. Rev. Lett. 115, 250402 (2015).  https://doi.org/10.1103/PhysRevLett.115.250402 ADSCrossRefGoogle Scholar
  6. 6.
    D. Rosenberg et al., New J. Phys. 11, 045009 (2009).  https://doi.org/10.1088/1367-2630/11/4/045009 ADSCrossRefGoogle Scholar
  7. 7.
    A. Biswas, J.M. Kovalik, M.W. Wright, W.T. Roberts, M.K. Cheng, K.J. Quirk, M. Srinivasan, M.D. Shaw, K.M. Birnbaum, LLCD operations using the optical communications telescope laboratory (OCTL), in Proceedings of SPIE, 8971, Free-Space Laser Communication and Atmospheric Propagation XXVI, 9710X (2014).  https://doi.org/10.1117/12.2044087
  8. 8.
    J.J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M.J.A. de Dood, A. Fiore, M.P. van Exter, Phys. Rev. Lett. 112, 117604 (2014).  https://doi.org/10.1103/PhysRevLett.112.117604 ADSCrossRefGoogle Scholar
  9. 9.
    D.Y. Vodolazov, Y.P. Korneeva, A.V. Semenov, A.A. Korneev, G.N. Goltsman, Phys. Rev. B 92, 104503 (2015).  https://doi.org/10.1103/PhysRevB.92.104503 ADSCrossRefGoogle Scholar
  10. 10.
    A.G. Kozorezov, C. Lambert, F. Marsili, M.J. Stevens, V.B. Verma, J.P. Allmaras, M.D. Shaw, R.P. Mirin, S.W. Nam, Phys. Rev. B 96, 054507 (2017).  https://doi.org/10.1103/PhysRevB.96.054507 ADSCrossRefGoogle Scholar
  11. 11.
    J.K.W. Yang, A.J. Kerman, E.A. Dauler, V. Anant, K.M. Rosfjord, K.K. Berggren, I.E.E.E. Trans, Appl. Supercond. 17, 581–585 (2007).  https://doi.org/10.1109/TASC.2007.898660 ADSCrossRefGoogle Scholar
  12. 12.
    F. Marsili, F. Najafi, C. Herder, K.K. Berggren, Appl. Phys. Lett. 98, 093507 (2011).  https://doi.org/10.1063/1.3560458 ADSCrossRefGoogle Scholar
  13. 13.
    H.B.G. Casimir, Physica 5, 495–500 (1938).  https://doi.org/10.1016/S0031-8914(38)80162-2 ADSCrossRefGoogle Scholar
  14. 14.
    D.G. Cahill, H.E. Fischer, T. Klitsner, E.T. Swartz, R.O. Pohl, J. Vac. Sci. Technol. A 7, 1259 (1989).  https://doi.org/10.1116/1.576265 ADSCrossRefGoogle Scholar
  15. 15.
    J.P. Allmaras, A.D. Beyer, R.M. Briggs, F. Marsili, M.D. Shaw, G.V. Resta, J.A. Stern, V.B. Verma, R.P. Mirin, S.W. Nam, W.H. Farr, in Conference on Lasers and Electro-Optics, JTh3E.7 (2017).  https://doi.org/10.1364/CLEO_AT.2017.JTh3E.7
  16. 16.
    A.J. Kerman, E.A. Dauler, W.E. Keicher, J.K.W. Yang, K.K. Berggren, G. Gol’tsman, B. Voronov, Appl. Phys. Lett. 88, 111116 (2006).  https://doi.org/10.1063/1.2183810 ADSCrossRefGoogle Scholar
  17. 17.
    T. Klitsner, J.E. VanCleve, H.E. Fischer, R.O. Pohl, Phys. Rev. B 38, 7576–7594 (1987).  https://doi.org/10.1103/PhysRevB.38.7576 ADSCrossRefGoogle Scholar
  18. 18.
    S. Mazumder, A. Majumdar, J. Heat Transf. 123, 749–759 (2001).  https://doi.org/10.1115/1.1377018 CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply  2018

Authors and Affiliations

  1. 1.Department of Applied Physics and Materials ScienceCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Department of PhysicsLancaster UniversityLancasterUK

Personalised recommendations