Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 134–140 | Cite as

A Kinetic Inductance Ammeter with Coplanar Waveguide Input Structure for Magnetic Flux Focusing

  • G. WangEmail author
  • C. L. Chang
  • S. Padin
  • F. Carter
  • T. Cecil
  • V. G. Yefremenko
  • V. Novosad


We propose a multiplexible kinetic inductance ammeter, which uses a high-quality-factor, superconducting, lumped-element, kinetic inductance resonator as a current sensor, a short, superconducting coplanar waveguide (CPW) for current input, and a CPW transmission line for the sensor readout. The resonator consists of an interdigitated capacitor and a superconducting loop that inductively couples to the input CPW. Current running through the central line of the input CPW generates magnetic fields which are focused into the gaps of the input CPW. These magnetic fields can be measured collectively as the magnetic flux through the superconducting loop. The kinetic inductance of the superconducting loop depends on the screening current for the magnetic flux, so the input current is converted to a change in the frequency of the resonator. We analyze the response and noise of a kinetic inductance ammeter with a high-resistivity NbN loop.


Superconductivity Kinetic inductance Ammeter 



Work at Argonne National Laboratory, including the work at the Center for Nanoscale Materials, a US Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility, was supported by the Office of Science and Office of Basic Energy Sciences of the US Department of Energy, under Contract No. DE-AC02- 06CH11357.


  1. 1.
    P.K. Day, H.G. Leduc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas, Nature 425, 817–821 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    S. Doyle, P. Mauskopf, J. Naylon, A. Porch, C. Dunscombe, J. Low Temp. Phys. 151, 530–536 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    D.G. McDonald, Appl. Phys. Lett. 50, 775–777 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    A.J. Annunziata, D.F. Santavicca, L. Frunzio, G. Catelani, M.J. Rooks, A. Frydman, D.E. Prober, Nanotechnology 21, 445202 (2010)CrossRefGoogle Scholar
  5. 5.
    K. Enpuku, H. Moritaka, H. Inokuchi, T. Kisu, M. Takeo, Jpn. Appl. Phys. 34, L675–L678 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    J. Luomahaara, V. Vesteronen, L. Gronberg, J. Hassel, Nat. Commun. 5, 4872 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    A. Kher, P.K. Day, B.H. Eom, J. Zmuidzinas, H.G. Leduc, J. Low Temp. Phys. 184, 480–485 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    M.R. Vissers, J. Hubmayr, M. Sandberg, S. Chaudhuri, C. Bockstiegel, J. Gao, Appl. Phys. Lett. 107, 062601 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    A.K. Raychaudhuri, C. Egloff, L. Rinderer, J. Low Temp. Phys. 53, 513–561 (1983)ADSCrossRefGoogle Scholar
  10. 10.
    N. Samkharadze, A. Bruno, P. Scarlino, G. Zheng, D.P. DiVincenzo, L. DiCarlo, L.M.K. Vandersypen, Phys. Rev. Appl. 5, 044004 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    J.E. Healey, T. Lindstrom, M.S. Colclough, C.M. Muirhead, A.Ya. Tzelenchuk, Appl. Phys. Lett. 93, 043513 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    W.H. Chang, J. Appl. Phys. 50, 8129 (1979)ADSCrossRefGoogle Scholar
  13. 13.
    J. Zmuidzinas, Annu. Rev. Condens. Matter Phys. 3, 169–214 (2012)CrossRefGoogle Scholar
  14. 14.
    J. Kang, R. Han, G. Xiong, A. Liu, Y. Wang, J. Appl. Phys. 81(4), 1829 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Sohn, J. Lee, H. Park, S. Cho, IEEE Trans. Adv. Pack. 24(4), 521 (2001)CrossRefGoogle Scholar
  16. 16.
    F.W. Grover, Inductance Calculations (Dover Publication Inc., New York, 1973)Google Scholar
  17. 17.
    J.R. Clem, J. Appl. Phys. 113, 013910 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.High Energy Physics DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Kavli Institute for Cosmological PhysicsThe University of ChicagoChicagoUSA
  3. 3.Materials Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations