Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 435–440 | Cite as

Integrated SQUID/Sensor Metallic Magnetic Microcalorimeter for Gamma-Ray Spectroscopy

  • S. T. P. Boyd
  • R. Hummatov
  • G. B. Kim
  • L. N. Le
  • J. A. Hall
  • R. Cantor
  • S. Friedrich
Article

Abstract

Metallic magnetic microcalorimeters (MMCs) achieve energy resolution comparable to transition-edge sensors (TESs) but rely on different measurement physics that may allow MMCs to surpass TESs in some future applications. We have recently completed fabrication of new MMC γ-ray detector arrays using several exploratory sensor designs. All designs integrate the SQUID and sensor on the same chip and use a superconducting cap layer on the paramagnet, but explore different combinations of combined/separate sensing and magnetization coils and direct/flux transformer coupling to the input SQUIDs. This report describes the design and initial testing of one of these devices, which has so far demonstrated an energy resolution of 38 eV at 60 keV near 10 mK using natural-abundance silver–erbium paramagnet.

Keywords

MMC Metallic magnetic calorimeter Gamma-ray spectroscopy 

Notes

Acknowledgements

S.B. thanks the UNM Center for Advanced Research Computing for their ongoing support. This work was funded by the U.S. DOE Office of Non-proliferation R&D (NA-22) under Grant LL16-MagMicro-PD2La. It was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

References

  1. 1.
    D. Hengstler, M. Keller, C. Schötz, J. Geist, M. Krantz, S. Kempf, L. Gastaldo, A. Fleischmann, T. Gassner, G. Weber, R. Märtin, Th Stöhlker, C. Enss, Phys. Scr. 2015, 014054 (2015).  https://doi.org/10.1088/0031-8949/2015/t166/014054 CrossRefGoogle Scholar
  2. 2.
    C. Bates, C. Pies, S. Kempf, D. Hengstler, A. Fleischmann, L. Gastaldo, C. Enss, S. Friedrich, J. Low Temp. Phys. 184, 351–355 (2016).  https://doi.org/10.1007/s10909-015-1348-0 ADSCrossRefGoogle Scholar
  3. 3.
    M. Rodrigues, R. Mariam, M. Loidl, EPJ Web Conf. 146, 10012 (2017).  https://doi.org/10.1051/epjconf/201714610012 CrossRefGoogle Scholar
  4. 4.
    A. Fleischmann, C. Enss, G.M. Seidel, Metallic magnetic calorimeters, in Cryogenic Particle Detection, ed. by C. Enss (Springer, Berlin, 2005), pp. 151–216Google Scholar
  5. 5.
    R. Winkler, A.S. Hoover, M.W. Rabin, D.A. Bennett, W.B. Doriese, J.W. Fowler, J. Hays-Wehle, R.D. Horansky, C.D. Reintsema, D.R. Schmidt, L.R. Vale, J.N. Ullom, Nucl. Instrum. Methods A 770, 203–210 (2015).  https://doi.org/10.1016/j.nima.2014.09.049 ADSCrossRefGoogle Scholar
  6. 6.
    M.K. Bacrania, A.S. Hoover, P.J. Karpius, M.W. Rabin, C.R. Rudy, D.T. Vo, J.A. Beall, D.A. Bennett, W.B. Doriese, G.C. Hilton, R.D. Horansky, K.D. Irwin, N. Jethava, E. Sassi, J.N. Ullom, L.R. Vale, IEEE Trans. Nucl. Sci. 56(4), 2299–2302 (2009).  https://doi.org/10.1109/TNS.2009.2022754 ADSCrossRefGoogle Scholar
  7. 7.
    C.R. Bates, C. Pies, S. Kempf, D. Hengstler, A. Fleischmann, L. Gastaldo, C. Enss, S. Friedrich, Appl. Phys. Lett. 109, 023513 (2016).  https://doi.org/10.1063/1.4958699 ADSCrossRefGoogle Scholar
  8. 8.
    R. Hummatov, J.A. Hall, G.B. Kim, S. Friedrich, R. Cantor, S.T.P. Boyd, J. Low Temp. Phys. (2018).  https://doi.org/10.1007/s10909-018-1946-8 CrossRefGoogle Scholar
  9. 9.
    R. Hummatov, L.N. Le, J.A. Hall, S. Friedrich, R.A. Cantor, S.T.P. Boyd, IEEE Trans. Appl. Supercond. 27(4), 2200205 (2017).  https://doi.org/10.1109/TASC.2016.2626918 CrossRefGoogle Scholar
  10. 10.
    S.T.P. Boyd, R.H. Cantor, AIP Conf. Proc. 1185, 595 (2009).  https://doi.org/10.1063/1.3292412 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of New MexicoAlbuquerqueUSA
  2. 2.Lawrence Livermore National LaboratoryLivermoreUSA
  3. 3.STAR CryoelectronicsSanta FeUSA

Personalised recommendations