Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 88–95 | Cite as

Thermal Kinetic Inductance Detectors for Ground-Based Millimeter-Wave Cosmology

  • B. A. Steinbach
  • J. J. Bock
  • H. T. Nguyen
  • R. C. O’Brient
  • A. D. Turner
Article
  • 92 Downloads

Abstract

We show measurements of thermal kinetic inductance detectors (TKIDs) intended for millimeter-wave cosmology in the 200–300 GHz atmospheric window. The TKID is a type of bolometer which uses the kinetic inductance of a superconducting resonator to measure the temperature of the thermally isolated bolometer island. We measure bolometer thermal conductance, time constant, and noise equivalent power. We also measure the quality factor of our resonators as the bath temperature varies to show they are limited by effects consistent with coupling to two-level systems.

Keywords

TKID Thermal kinetic inductance detector Resonator bolometer CMB Cosmic microwave background TLS Two-level systems 

Notes

Acknowledgements

This work was supported by JPL’s Research and Technology Development Fund for Projects R.17.223.057 and R.17.223.058.

References

  1. 1.
    Keck Array and BICEP2 Collaborations, Improved constraints on cosmology and foregrounds from BICEP2 and Keck Array cosmic microwave background data with inclusion of 95 GHz band. Phys. Rev. Lett. 116(3), 031302 (2016).  https://doi.org/10.1103/PhysRevLett.116.031302
  2. 2.
    M. Kamionkowski, E.D. Kovetz, The quest for B modes from inflationary gravitational waves. Ann. Rev. Astron. Astrophys. 54(1), 227–269 (2016).  https://doi.org/10.1146/annurev-astro-081915-023433. (ISSN 0066-4146)ADSCrossRefGoogle Scholar
  3. 3.
    G. Ulbricht, B.A. Mazin, P. Szypryt, A.B. Walter, Clint Bockstiegel, Bruce Bumble, Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy. Appl. Phys. Lett. 106(25), 251103 (2015).  https://doi.org/10.1063/1.4923096 ADSCrossRefGoogle Scholar
  4. 4.
    O. Quaranta, T. Cecil, L. Gades, A. Miceli, Mitigation of position dependence in x-rays absorbers for thermal kinetic inductance detectors. J. Phys. Conf. Ser. 507(4), 042033 (2014).  https://doi.org/10.1088/1742-6596/507/4/042033 CrossRefGoogle Scholar
  5. 5.
    A. Miceli, T.W. Cecil, L. Gades, O. Quaranta, Towards x-ray thermal kinetic inductance detectors. J. Low Temp. Phys. 176(3–4), 497–503 (2014).  https://doi.org/10.1007/s10909-013-1033-0 ADSCrossRefGoogle Scholar
  6. 6.
    T.W. Cecil, L. Gades, T. Madden, D. Yan, A. Miceli, Optimization of thermal kinetic inductance detectors for x-ray spectroscopy. IEEE Trans. Appl. Supercond. 25(3), 2400805 (2015).  https://doi.org/10.1109/TASC.2014.2384995 ADSCrossRefGoogle Scholar
  7. 7.
    M.A. Lindeman, Resonator-bolometer theory, microwave read out, and kinetic inductance bolometers. J. Appl. Phys. 116(2), 024506 (2014).  https://doi.org/10.1063/1.4890018 ADSCrossRefGoogle Scholar
  8. 8.
    P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas, A broadband superconducting detector suitable for use in large arrays. Nature 425(6960), 817–821 (2003).  https://doi.org/10.1038/nature02037 ADSCrossRefGoogle Scholar
  9. 9.
    H. McCarrick, D. Flanigan, G. Jones, B.R. Johnson, P. Ade, D. Araujo, K. Bradford, R. Cantor, G. Che, P. Day, S. Doyle, H. Leduc, M. Limon, V. Luu, P. Mauskopf, A. Miller, T. Mroczkowski, C. Tucker, J. Zmuidzinas, Horn-coupled, commercially-fabricated aluminum lumped-element kinetic inductance detectors for millimeter wavelengths. Rev. Sci. Instrum. 85(12), 123117 (2014).  https://doi.org/10.1063/1.4903855 ADSCrossRefGoogle Scholar
  10. 10.
    B. Dober, J.A. Austermann, J.A. Beall, D. Becker, G. Che, H.M. Cho, M. Devlin, S.M. Duff, N. Galitzki, J. Gao, C. Groppi, G.C. Hilton, J. Hubmayr, K.D. Irwin, C.M. McKenney, D. Li, N. Lourie, P. Mauskopf, M.R. Vissers, Y. Wang, Optical demonstration of thz, dual-polarization sensitive microwave kinetic inductance detectors. J. Low Temp. Phys. 184, 1–7 (2015).  https://doi.org/10.1007/s10909-015-1434-3 CrossRefGoogle Scholar
  11. 11.
    P.A.R. Ade, R.W. Aikin, M. Amiri, D. Barkats, S.J. Benton, C.A. Bischoff, J.J. Bock, J.A. Bonetti, J.A. Brevik, I. Buder, E. Bullock, G. Chattopadhyay, G. Davis, P.K. Day, C.D. Dowell, L. Duband, J.P. Filippini, S. Fliescher, S.R. Golwala, M. Halpern, M. Hasselfield, S.R. Hildebrandt, G.C. Hilton, V. Hristov, H. Hui, K.D. Irwin, W.C. Jones, K.S. Karkare, J.P. Kaufman, B.G. Keating, S. Kefeli, S.A. Kernasovskiy, J.M. Kovac, C.L. Kuo, H.G. LeDuc, E.M. Leitch, N. Llombart, M. Lueker, P. Mason, K. Megerian, L. Moncelsi, C.B. Netterfield, H.T. Nguyen, R. O’Brient, R.W. Ogburn IV, A. Orlando, C. Pryke, A.S. Rahlin, C.D. Reintsema, S. Richter, M.C. Runyan, R. Schwarz, C.D. Sheehy, Z.K. Staniszewski, R.V. Sudiwala, G.P. Teply, J.E. Tolan, A. Trangsrud, R.S. Tucker, A.D. Turner, A.G. Vieregg, A. Weber, D.V. Wiebe, P. Wilson, C.L. Wong, K.W. Yoon, J. Zmuidzinas, Antenna-coupled TES bolometers used in BICEP2, Keck array, and Spider. Astrophys. J. 812(2), 176 (2015).  https://doi.org/10.1088/0004-637X/812/2/176 ADSCrossRefGoogle Scholar
  12. 12.
    C.L. Kuo, J.J. Bock, J.A. Bonetti, J. Brevik, G. Chattopadhyay, P.K. Day, S. Golwala, M. Kenyon, A.E. Lange, H.G. LeDuc, H. Nguyen, R.W. Ogburn, A. Orlando, A. Transgrud, A. Turner, G. Wang, J. Zmuidzinas, in Antenna-Coupled TES Bolometer Arrays for CMB Polarimetry, vol. 7020, (International Society for Optics and Photonics, 2008), p. 70201I.  https://doi.org/10.1117/12.788588
  13. 13.
    J. Zmuidzinas, Superconducting microresonators: physics and applications. Ann. Rev. Condens. Matter Phys. 3(1), 169–214 (2012).  https://doi.org/10.1146/annurev-conmatphys-020911-125022 CrossRefGoogle Scholar
  14. 14.
    J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B.A. Mazin, P.K. Day, H.G. Leduc, Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators. Appl. Phys. Lett. 92(15), 152505 (2008).  https://doi.org/10.1063/1.2906373. (ISSN 0003-6951)ADSCrossRefGoogle Scholar
  15. 15.
    M. Von Schickfus, S. Hunklinger, Saturation of the dielectric absorption of vitreous silica at low temperatures. Phys. Lett. A 64(1), 144–146 (1977).  https://doi.org/10.1016/0375-9601(77)90558-8 ADSCrossRefGoogle Scholar
  16. 16.
    D. Flanigan, B.R. Johnson, M.H. Abitbol, S. Bryan, R. Cantor, P. Day, G. Jones, P. Mauskopf, H. McCarrick, A. Miller, J. Zmuidzinas, Magnetic field dependence of the internal quality factor and noise performance of lumped-element kinetic inductance detectors. Appl. Phys. Lett. 109(14), 143503 (2016).  https://doi.org/10.1063/1.4964119 ADSCrossRefGoogle Scholar
  17. 17.
    R. Barends, J. Wenner, M. Lenander, Y. Chen, R.C. Bialczak, J. Kelly, E. Lucero, P. O’Malley, M. Mariantoni, D. Sank, H. Wang, T.C. White, Y. Yin, J. Zhao, A.N. Cleland, J.M. Martinis, J.J.A. Baselmans, Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits. Appl. Phys. Lett. 99(11), 113507 (2011).  https://doi.org/10.1063/1.3638063 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • B. A. Steinbach
    • 1
  • J. J. Bock
    • 1
  • H. T. Nguyen
    • 2
  • R. C. O’Brient
    • 2
  • A. D. Turner
    • 2
  1. 1.Department of PhysicsCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Jet Propulsion LaboratoryPasadenaUSA

Personalised recommendations