Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 485–497 | Cite as

A Scalable Readout for Microwave SQUID Multiplexing of Transition-Edge Sensors

  • J. D. Gard
  • D. T. Becker
  • D. A. Bennett
  • J. W. Fowler
  • G. C. Hilton
  • J. A. B. Mates
  • C. D. Reintsema
  • D. R. Schmidt
  • D. S. Swetz
  • J. N. Ullom
Article

Abstract

The readout requirements for instruments based on transition-edge sensors (TESs) have dramatically increased over the last decade as demand for systems with larger arrays and faster sensors has grown. Emerging systems are expected to contain many thousands of sensors and/or sensors with time constants as short as 100 ms. These requirements must be satisfied while maintaining low noise, high dynamic range, and low crosstalk. A promising readout candidate for future TES arrays is the microwave SQUID multiplexer, which offers several gigahertz of readout bandwidth per pair of coaxial cables. In microwave SQUID multiplexing, sensor signals are coupled to RF-SQUIDs embedded in superconducting microwave resonators, which are probed via a common microwave feedline and read out using gigahertz signals. This form of SQUID multiplexing moves complexity from the cryogenic stages to room temperature hardware and digital signal processing firmware which must synthesize the microwave tones and process the information contained within them. To demultiplex signals from the microwave SQUID multiplexer, we have implemented an FPGA-based firmware architecture that is flexible enough to read out a variety of differently optimized TESs. A gamma-ray spectrometer targeted at nuclear materials accounting applications, known as SLEDGEHAMMER, is an early adopter of microwave SQUID multiplexing and is driving our current firmware development effort. This instrument utilizes 300 kHz full-width half-maximum resonators with 256 channels in a one gigahertz wide band. We have recently demonstrated undegraded readout of 128 channels using two ROACH2s on a single pair of coaxial cables. This manuscript describes the firmware implementation for the readout electronics of these early array-scale demonstrations.

Keywords

Transition-edge sensors Firmware Multiplexing 

Notes

Acknowledgements

We gratefully acknowledge support from the U.S. Department of Energy Nuclear Energy University Program and the Basic Energy Science Sciences Accelerator and Detector Research Program. We would also like to thank the National Institute of Standards and Technology Innovations in Measurement Science Program.

References

  1. 1.
    O. Noroozian, J.A. Mates, D.A. Bennett, J.A. Brevik, J.W. Fowler, J. Gao, G.C. Hilton, R.D. Horansky, K.D. Irwin, Z. Kang et al., Appl. Phys. Lett. 103, 202602 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    J.A.B. Mates, The Microwave SQUID Multiplexer, Ph.D. thesis, School University of Colorado (2011)Google Scholar
  3. 3.
    J. Mates, D. Becker, D. Bennett, B. Dober, J. Gard, J. Hays-Wehle, J. Fowler, G. Hilton, C. Reintsema, D. Schmidt et al., Appl. Phys. Lett. 111, 062601 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    D.A. Bennett, J.A. Mates, J.D. Gard, A.S. Hoover, M.W. Rabin, C.D. Reintsema, D.R. Schmidt, L.R. Vale, J.N. Ullom, IEEE Trans. Appl. Supercond. 25, 1 (2015)CrossRefGoogle Scholar
  5. 5.
    S. Stanchfield, P. Ade, J. Aguirre, J. Brevik, H. Cho, R. Datta, M. Devlin, S. Dicker, B. Dober, D. Egan et al., J. Low Temp. Phys. 184, 460 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    J. Gao, J. Zmuidzinas, B.A. Mazin, H.G. LeDuc, P.K. Day, Appl. Phys. Lett. 90, 102507 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    J. Mates, K. Irwin, L. Vale, G. Hilton, J. Gao, K. Lehnert, J. Low Temp. Phys. 167, 707 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    T.J. Madden, T.W. Cecil, L.M. Gades, O. Quaranta, D. Yan, A. Miceli, D.T. Becker, D.A. Bennett, J.P. Hays-Wehle, G.C. Hilton et al., IEEE Trans. Appl. Supercond. 27, 1 (2017)CrossRefGoogle Scholar
  9. 9.
    R. Duan, S. McHugh, B. Serfass, B.A. Mazin, A. Merrill, S.R. Golwala, T.P. Downes, N.G. Czakon, P.K. Day, J. Gao et al., Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V 7741, 77411V (2010)Google Scholar
  10. 10.
    S. McHugh, B.A. Mazin, B. Serfass, S. Meeker, K. O’Brien, R. Duan, R. Raffanti, D. Werthimer, Rev. Sci. Instrum. 83, 044702 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    J. Hickish, Z. Abdurashidova, Z. Ali, K.D. Buch, S.C. Chaudhari, H. Chen, M. Dexter, R.S. Domagalski, J. Ford, G. Foster et al., J. Astron. Instrum. 5, 1641001 (2016)CrossRefGoogle Scholar
  12. 12.
    E. Nash, AN-1039, Application Note, Analog Devices (2009)Google Scholar
  13. 13.
    D.C. Price, arXiv preprint arXiv:1607.03579 (2016)
  14. 14.
    J.E. Volder, I.R.E. Trans, Electron. Comput. 3, 330 (1959)Google Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  • J. D. Gard
    • 1
  • D. T. Becker
    • 1
  • D. A. Bennett
    • 2
  • J. W. Fowler
    • 1
    • 2
  • G. C. Hilton
    • 2
  • J. A. B. Mates
    • 1
  • C. D. Reintsema
    • 2
  • D. R. Schmidt
    • 2
  • D. S. Swetz
    • 2
  • J. N. Ullom
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of ColoradoBoulderUSA
  2. 2.Quantum Sensors Group, National Institute of Standards and TechnologyBoulderUSA

Personalised recommendations