Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 356–364 | Cite as

Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors

  • K. Sakai
  • J. S. Adams
  • S. R. Bandler
  • J. A. Chervenak
  • A. M. Datesman
  • M. E. Eckart
  • F. M. Finkbeiner
  • R. L. Kelley
  • C. A. Kilbourne
  • A. R. Miniussi
  • F. S. Porter
  • J. S. Sadleir
  • S. J. Smith
  • N. A. Wakeham
  • E. J. Wassell
  • W. Yoon
  • H. Akamatsu
  • M. P. Bruijn
  • L. Gottardi
  • B. D. Jackson
  • J. van der Kuur
  • B. J. van Leeuwen
  • A. J. van der Linden
  • H. J. van Weers
  • M. Kiviranta
Article

Abstract

We are developing kilo-pixel arrays of transition-edge sensors (TESs) for the X-ray Integral Field Unit on ESA’s Athena observatory. Previous measurements of AC-biased Mo/Au TESs have highlighted a frequency-dependent loss mechanism that results in broader transitions and worse spectral performance compared to the same devices measured under DC bias. In order to better understand the nature of this loss, we are now studying TES pixels in different geometric configurations. We present measurements on devices of different sizes and with different metal features used for noise mitigation and X-ray absorption. Our results show how the loss mechanism is strongly dependent upon the amount of metal in close proximity to the sensor and can be attributed to induced eddy current coupling to these features. We present a finite element model that successfully reproduces the magnitude and geometry dependence of the losses. Using this model, we present mitigation strategies that should reduce the losses to an acceptable level.

Keywords

Transition-edge sensors Microcalorimeters Frequency-division multiplexing Eddy current heating 

References

  1. 1.
    D. Barret et al., Proc. SPIE  9905, 99052F (2016).  https://doi.org/10.1117/12.2232432
  2. 2.
    S. J. Smith et al., Proc. SPIE  9905, 99052H (2016).  https://doi.org/10.1117/12.2231749
  3. 3.
    L. Gottardi et al., IEEE Trans. Appl. Supercond. 27, 4 (2017).  https://doi.org/10.1109/TASC.2017.2655500 CrossRefGoogle Scholar
  4. 4.
    J.N. Ullom et al., Appl. Phys. Lett. 84, 2 (2004).  https://doi.org/10.1063/1.1753058 CrossRefGoogle Scholar
  5. 5.
    M.A. Lindeman et al., Nucl. Instrum. Methods Phys. Res. 520, 1 (2004).  https://doi.org/10.1016/j.nima.2003.11.264 CrossRefGoogle Scholar
  6. 6.
    M.P. Bruijn et al., J. Low Temp. Phys. 167, 5 (2012).  https://doi.org/10.1007/s10909-011-0422-5 CrossRefGoogle Scholar
  7. 7.
    M. Kiviranta, L. Grönberg, N. Beev, J. van der Kuur, J. Phys. Conf. Ser. 507, 4 (2014).  https://doi.org/10.1088/1742-6596/507/4/042017 CrossRefGoogle Scholar
  8. 8.
    J.E. Sadleir et al., Phys. Rev. Lett. 104, 047003 (2010).  https://doi.org/10.1103/PhysRevLett.104.047003 ADSCrossRefGoogle Scholar
  9. 9.
    S.J. Smith et al., J. Appl. Phys. 114, 7 (2013).  https://doi.org/10.1063/1.4818917 CrossRefGoogle Scholar
  10. 10.
    L. Gottardi et al., J. Low Temp. Phys. 176, 3 (2014).  https://doi.org/10.1007/s10909-014-1093-9 CrossRefGoogle Scholar
  11. 11.
    D.S. Swetz, D.A. Bennett, K.D. Irwin, D.R. Schmidt, J.N. Ullom, Appl. Phys. Lett. 101, 2 (2012).  https://doi.org/10.1063/1.4771984 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • K. Sakai
    • 1
    • 2
  • J. S. Adams
    • 1
    • 2
  • S. R. Bandler
    • 1
  • J. A. Chervenak
    • 1
  • A. M. Datesman
    • 1
    • 3
  • M. E. Eckart
    • 1
  • F. M. Finkbeiner
    • 1
    • 4
  • R. L. Kelley
    • 1
  • C. A. Kilbourne
    • 1
  • A. R. Miniussi
    • 1
    • 2
  • F. S. Porter
    • 1
  • J. S. Sadleir
    • 1
  • S. J. Smith
    • 1
    • 2
  • N. A. Wakeham
    • 1
    • 5
  • E. J. Wassell
    • 1
    • 3
  • W. Yoon
    • 1
    • 5
  • H. Akamatsu
    • 6
  • M. P. Bruijn
    • 6
  • L. Gottardi
    • 6
  • B. D. Jackson
    • 6
  • J. van der Kuur
    • 6
  • B. J. van Leeuwen
    • 6
  • A. J. van der Linden
    • 6
  • H. J. van Weers
    • 6
  • M. Kiviranta
    • 7
  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.CRESST II – University of MarylandBaltimore CountyUSA
  3. 3.SGT Inc.GreenbeltUSA
  4. 4.Wyle Information SystemMcLeanUSA
  5. 5.NPP – Universities Space Research AssociationColumbiaUSA
  6. 6.SRON Netherlands Institute for Space ResearchUtrechtThe Netherlands
  7. 7.VTTEspooFinland

Personalised recommendations