Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 189–195 | Cite as

Electron–Phonon Coupling in Ti/TiN MKIDs Multilayer Microresonator

  • M. Faverzani
  • P. K. Day
  • E. Ferri
  • A. Giachero
  • B. Margesin
  • R. Mezzena
  • A. Nucciotti
  • A. Puiu
Article
  • 37 Downloads

Abstract

Over the last few years, there has been a growing interest toward the use of superconducting microwave microresonators operated in quasi-thermal equilibrium mode, especially applied to single particle detection. Indeed, previous devices designed and tested by our group with X-ray sources in the keV range evidenced that several issues arise from the attempt of detection through athermal quasiparticles produced within direct strikes of X-rays in the superconductor material of the resonator. In order to prevent issues related to quasiparticles self-recombination and to avoid exchange of athermal phonons with the substrate, our group focused on the development of thermal superconducting microresonators. In this configuration, resonators composed of multilayer films of Ti/TiN sense the temperature of an absorbing material. To maximize the thermal response, low-critical-temperature films are preferable. By lowering the critical temperature, though, the maximum probing power bearable by the resonators decreases abruptly because of the weakening of the electron–phonon coupling. A proper compromise between the value of critical temperature (and hence sensitivity to energy deposition) and readout power bearable by the device has to be found in order to avoid signal-to-noise ratio degradation. In this contribution, we report the latest measurement of the electron–phonon coupling.

Keywords

Microwave kinetic inductance detectors Temperature sensors Electron-phonon coupling 

Notes

Acknowledgements

This work is supported by Fondazione Cariplo, through the project Development of Microresonator Detectors for Neutrino Physics (Grant International Recruitment Call 2010, ref. 2010-2351).

References

  1. 1.
    P.K. Day et al., Nature 425, 817 (2003).  https://doi.org/10.1038/nature02037 ADSCrossRefGoogle Scholar
  2. 2.
    M. Faverzani, Superconducting Microwave Microresonators for Neutrino Physics. Ph.D. thesis, University of Milano-Bicocca, Milano (2015)Google Scholar
  3. 3.
    J. Gao et al., J. Low Temp. Phys. 151, 557 (2008).  https://doi.org/10.1007/s10909-007-9688-z ADSCrossRefGoogle Scholar
  4. 4.
    G. Ulbricht et al., Appl. Phys. Lett. 106, 251103 (2015).  https://doi.org/10.1063/1.4923096 ADSCrossRefGoogle Scholar
  5. 5.
    A. Giachero et al., J. Low Temp. Phys. 176, 155 (2014).  https://doi.org/10.1007/s10909-013-1078-0 ADSCrossRefGoogle Scholar
  6. 6.
    L.J. Swenson et al., J. Appl. Phys. 113, 104501 (2013).  https://doi.org/10.1063/1.4794808 ADSCrossRefGoogle Scholar
  7. 7.
    P.J. de Visser, S. Withington, D.J. Goldie, J. Appl. Phys. 108, 114504 (2010).  https://doi.org/10.1063/1.3517152 ADSCrossRefGoogle Scholar
  8. 8.
    H.G. Leduc et al., Appl. Phys. Lett. 97, 102509 (2010).  https://doi.org/10.1063/1.3480420 ADSCrossRefGoogle Scholar
  9. 9.
    K. Irwin, G. Hilton Topics in Applied Physics book Series, vol. 99 (2005).  https://doi.org/10.1007/10933596_3

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di Milano-BicoccaMilanItaly
  2. 2.Sezione di Milano-BicoccaIstituto Nazionale di Fisica NucleareMilanItaly
  3. 3.Jet Propulsion LaboratoryPasadenaUSA
  4. 4.Fondazione Bruno KesslerTrentoItaly
  5. 5.Trento Institute for Fundamental Physics and Applications (TIPFA)Istituto Nazionale di Fisica NucleareTrentoItaly
  6. 6.Dipartimento di FisicaUniversità di TrentoPovoItaly

Personalised recommendations