Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 267–275 | Cite as

Characterization of the Mid-Frequency Arrays for Advanced ACTPol

  • S. K. Choi
  • J. Austermann
  • J. A. Beall
  • K. T. Crowley
  • R. Datta
  • S. M. Duff
  • P. A. Gallardo
  • S. P. Ho
  • J. Hubmayr
  • B. J. Koopman
  • Y. Li
  • F. Nati
  • M. D. Niemack
  • L. A. Page
  • M. Salatino
  • S. M. Simon
  • S. T. Staggs
  • J. Stevens
  • J. Ullom
  • E. J. Wollack
Article

Abstract

The Advanced ACTPol upgrade on the Atacama Cosmology Telescope aims to improve the measurement of the cosmic microwave background anisotropies and polarization, using four new dichroic detector arrays fabricated on 150-mm silicon wafers. These bolometric cameras use AlMn transition-edge sensors, coupled to feedhorns with orthomode transducers for polarization sensitivity. The first deployed camera is sensitive to both 150 and 230 GHz. Here, we present the laboratory characterization of the thermal parameters and optical efficiencies for the two newest fielded arrays, each sensitive to both 90 and 150 GHz. We provide assessments of the parameter uniformity across each array with evaluation of systematic uncertainties. Lastly, we show the arrays’ initial performance in the field.

Keywords

Cosmic microwave background Transition-edge sensor Atacama Cosmology Telescope Advanced ACTPol Detector efficiency 

Notes

Acknowledgements

This work was supported by the U.S. National Science Foundation through award 1440226. The development of multichroic detectors and lenses was supported by NASA Grants NNX13AE56G and NNX14AB58G. The work of KTC and BJK was supported by NASA Space Technology Research Fellowship awards.

References

  1. 1.
    Planck Collaboration et al., A&A 594, A13 (2016)Google Scholar
  2. 2.
    S.W. Henderson et al., J. Low Temp. Phys. 184, 772–779 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    K.N. Abazajian, et al. ArXiv e-prints (2016)Google Scholar
  4. 4.
    R.J. Thornton et al., ApJS 227, 21 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    D. Li et al., J. Low Temp. Phys. 184(1), 66–73 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    S.P. Ho et al., J. Low Temp. Phys. 184(3), 559–567 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    J.T. Ward et al., in Volume 9914 of Proceedings of SPIE (2016), p. 991437Google Scholar
  8. 8.
    S.M. Duff et al., J. Low Temp. Phys. 184, 634–641 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    S.M. Simon et al., in Volume 9914 of Proceedings of SPIE (2016), p. 991416Google Scholar
  10. 10.
    K.D. Irwin et al., Low Temp. Detect. 605, 301–304 (2002)ADSGoogle Scholar
  11. 11.
    W.B. Doriese et al., J. Low Temp. Phys. 184(1), 389–395 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    C.G. Pappas et al., J. Low Temp. Phys. 184, 473–479 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Li et al., in Volume 9914 of Proceedings of SPIE (2016), p. 991435Google Scholar
  14. 14.
    K.T. Crowley et al., in Volume 9914 of Proceedings of SPIE (2016), p. 991431Google Scholar
  15. 15.
    G. Cataldo et al., Opt. Lett. 37, 4200 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    M. Hasselfield et al., ApJS 209, 17 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    S.M. Simon et al., J. Low Temp. Phys., in this Special Issue LTD17 (2018)Google Scholar
  18. 18.
    B.J. Koopman et al., J. Low Temp. Phys., in this Special Issue LTD17 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. K. Choi
    • 1
  • J. Austermann
    • 2
  • J. A. Beall
    • 2
  • K. T. Crowley
    • 1
  • R. Datta
    • 3
    • 4
  • S. M. Duff
    • 2
  • P. A. Gallardo
    • 5
  • S. P. Ho
    • 1
  • J. Hubmayr
    • 2
  • B. J. Koopman
    • 5
  • Y. Li
    • 1
  • F. Nati
    • 6
  • M. D. Niemack
    • 5
  • L. A. Page
    • 1
  • M. Salatino
    • 1
  • S. M. Simon
    • 3
  • S. T. Staggs
    • 1
  • J. Stevens
    • 5
  • J. Ullom
    • 2
  • E. J. Wollack
    • 4
  1. 1.Joseph Henry Laboratories of Physics, Jadwin HallPrinceton UniversityPrincetonUSA
  2. 2.Quantum Sensors GroupNISTBoulderUSA
  3. 3.Department of PhysicsUniversity of MichiganAnn ArborUSA
  4. 4.NASA Goddard Space Flight CenterGreenbeltUSA
  5. 5.Department of PhysicsCornell UniversityIthacaUSA
  6. 6.Department of PhysicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations