Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 149–156 | Cite as

Fabrication of Antenna-Coupled KID Array for Cosmic Microwave Background Detection

  • Q. Y. TangEmail author
  • P. S. Barry
  • R. Basu Thakur
  • A. Kofman
  • A. Nadolski
  • J. Vieira
  • E. Shirokoff


Kinetic inductance detectors (KIDs) have become an attractive alternative to traditional bolometers in the sub-mm and mm observing community due to their innate frequency multiplexing capabilities and simple lithographic processes. These advantages make KIDs a viable option for the O(500,000) detectors needed for the upcoming Cosmic Microwave Background-Stage 4 experiment. We have fabricated an antenna-coupled MKID array in the 150 GHz band optimized for CMB detection. Our design uses a twin-slot antenna coupled to an inverted microstrip made from a superconducting Nb/Al bilayer as the strip, a Nb ground plane and a SiN\(_x\) dielectric layer in between, which is then coupled to an Al KID grown on high-resistivity Si. We present the fabrication process and measurements of SiN\(_x\) microstrip resonators.


Fabrication Kinetic inductance detector Resonators Sub-mm wavelength 



This work is partially supported by NSF Award #1554565 and the Kavli NSF-PFC3 Detector Development Grant. This work was supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through Grant NSF PHY-1125897 and an endowment from the Kavli Foundation and its founder Fred Kavli. This work made use of the Pritzker Nanofabrication Facility of the Institute for Molecular Engineering at the University of Chicago, which receives support from SHyNE, a node of the National Science Foundations National Nanotechnology Coordinated Infrastructure (NSF NNCI-1542205).


  1. 1.
    Planck Collaboration, Astron. Astrophys. 594, A13 (2016). CrossRefGoogle Scholar
  2. 2.
    CMB-S4 Collaboration, arXiv:1610.02743 [astro-ph.CO] J. Baselmans, J. Low Temp. Phys. 167, 292 (2011). ADSCrossRefGoogle Scholar
  3. 3.
    C.M. Posada et al., Supercond. Sci. Technol. 28(9), 094002 (2015). ADSCrossRefGoogle Scholar
  4. 4.
    J. van der Kuur et al., IEEE Trans. Appl. Supercond. 25, 3 (2015). CrossRefGoogle Scholar
  5. 5.
    E. Shirokoff et al., Proc. SPIE 8452, 84520R (2012). CrossRefGoogle Scholar
  6. 6.
    M. Calvo, A. Benot, A. Catalano et al., J. Low Temp. Phys. 184, 816 (2016). ADSCrossRefGoogle Scholar
  7. 7.
    L.J. Swenson et al., Proc. SPIE 8452, 84520P (2012). CrossRefGoogle Scholar
  8. 8.
    H. McCarrick et al., Proc. SPIE 9914, 99140O (2016). CrossRefGoogle Scholar
  9. 9.
    B.R. Johnson et al., Proc. SPIE 9914, 99140X (2016). CrossRefGoogle Scholar
  10. 10.
    P.S. Barry et al., J. Low Temp. Phys. (2018).
  11. 11.
    A. Hornsby et al., J. Low Temp. Phys. (2018, submitted)Google Scholar
  12. 12.
    E.E. Quealy, The POLARBEAR Cosmic Microwave Background Polarization Experiment and Anti-reflection Coatings for Millimeter Wave Observations (University of California, Berkeley, 2012)Google Scholar
  13. 13.
    D.F. Filipovic, S.S. Gearhartm, G.M. Rebeiz, I.E.E.E. Trans, Microw. Theory Tech. 41(10), 1738 (1993). CrossRefGoogle Scholar
  14. 14.
    K. Geerlings, S. Shankar, E. Edwards, L. Frunzio, R.J. Schoelkopf, M.H. Devoret, Appl. Phys. Lett. 100, 192601 (2012). ADSCrossRefGoogle Scholar
  15. 15.
    R. Basu Thakur, Q.Y. Tang, E. Shirokoff, F. Carter, R. McGeehan, IEEE Trans. Appl. Supercond. 27, 4 (2017). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kavli Institute of Cosmological PhysicsUniversity of ChicagoChicagoUSA
  2. 2.Department of AstronomyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations