Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 282–287 | Cite as

Comparison of Different Mo/Au TES Designs for Radiation Detectors

  • Carlos PobesEmail author
  • Lourdes Fàbrega
  • Agustín Camón
  • Pavel Strichovanec
  • Javier Moral-Vico
  • Nieves Casañ-Pastor
  • Rosa M. Jáudenes
  • Javier Sesé


We report on the fabrication and characterization of Mo/Au-based transition-edge sensors (TES), intended to be used in X-ray detectors. We have performed complete dark characterization using IV curves, complex impedance and noise measurements at different bath temperatures and biases. Devices with two designs, different sizes and different membranes have been characterized, some of them with a central bismuth absorber. This has allowed extraction of the relevant parameters of the TES, analyses of their standard behavior and evaluation of their prospects.


Cryogenic detectors Transition-edge sensors Microcalorimeters 



Work financed by the Spanish Ministerio de Economía y Competitividad (MINECO, projects ESP2014-59306-JIN, ESP2014-53672-C3-2-P, ESP2016-76683-C3-2-R), the European Space Agency (ESA, CTP Contract “Optimization of a European TES array”) and the European Commission (H2020 project AHEAD: Integrated Activities for the high energy astrophysics domain”). Personnel from ICMAB acknowledge financial support from MINECO, through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-04969). RMJ wishes to thank MINECO for her FPI contract. We also thank PTB for providing the SQUIDs.


  1. 1.
    K.D. Irwin, C.C. Hilton, in Transition-Edge Sensors in Cryogenic Particle Detection, ed. by C. Enss (Springer, Berlin, 2005), vol. 99, pp. 63–149Google Scholar
  2. 2.
    D.A. Bennett, J.N. Ullom, Review of superconducting TES for X-ray and g-ray astrophysics. Supercond. Sci. Technol. 28, 084003 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    D. Barret et al., The Athena X-ray integral field unit (X-IFU). Proc. SPIE 9905, 99052F (2016)CrossRefGoogle Scholar
  4. 4.
    L. Fàbrega et al., Mo-based proximity bilayers for TES. IEEE Trans. Appl. Supercond. 19, 460 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    C. Pobes et al., Development of cryogenic X-ray detectors based on Mo/Au transition edge sensors. IEEE Trans. Appl. Supercond. 27, 2101505 (2017)CrossRefGoogle Scholar
  6. 6.
    P. Strichovanec et al., in preparationGoogle Scholar
  7. 7.
    S.J. Smith et al., Transition-edge sensor pixel parameters design of the microcalorimeters array for the X-ray Integral Field Unit on Athena. Proceed. SPIE 9905, 99052H (2016)ADSCrossRefGoogle Scholar
  8. 8.
    H.F.C. Hoevers et al., Comparative study of TiAu-based TES microcalorimeters with different geometries. J. Low Temp. Phys. 151, 94 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    J.N. Ullom et al., Characterization and reduction of unexplained noise in superconducting transition-edge sensors. Appl. Phys. Lett. 84, 4206 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    D.A. Bennett et al., Resistance in transition-edge sensors: a comparison of the resistively shunted junction and two-fluid models. Phys. Rev. B 87, 020508(R) (2013)ADSCrossRefGoogle Scholar
  11. 11.
    M. Galeazzi, Fundamental noise processes in TES devices. IEEE Trans. Appl. Supercond. 21, 267 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    I.J. Maasilta, Complex impedance, responsivity and noise of transition-edge sensors: analytical solutions for two- and three-block thermal models. AIP Adv. 2, 042110 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Ciencia de Materiales de AragónCSIC-Universidad de ZaragozaZaragozaSpain
  2. 2.Institut de Ciència de Materials de BarcelonaCSICBellaterraSpain
  3. 3.Instituto de Nanociencia de AragónUniversidad de ZaragozaZaragozaSpain

Personalised recommendations