Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 225–230 | Cite as

Microstructure Analysis of Bismuth Absorbers for Transition-Edge Sensor X-ray Microcalorimeters

  • Daikang Yan
  • Ralu Divan
  • Lisa M. Gades
  • Peter Kenesei
  • Timothy J. Madden
  • Antonino Miceli
  • Jun-Sang Park
  • Umeshkumar M. Patel
  • Orlando Quaranta
  • Hemant Sharma
  • Douglas A. Bennett
  • William B. Doriese
  • Joseph W. Fowler
  • Johnathon D. Gard
  • James P. Hays-Wehle
  • Kelsey M. Morgan
  • Daniel R. Schmidt
  • Daniel S. Swetz
  • Joel N. Ullom
Article
  • 88 Downloads

Abstract

Given its large X-ray stopping power and low specific heat capacity, bismuth (Bi) is a promising absorber material for X-ray microcalorimeters and has been used with transition-edge sensors (TESs) in the past. However, distinct X-ray spectral features have been observed in TESs with Bi absorbers deposited with different techniques. Evaporated Bi absorbers are widely reported to have non-Gaussian low-energy tails, while electroplated ones do not show this feature. In this study, we fabricated Bi absorbers with these two methods and performed microstructure analysis using scanning electron microscopy and X-ray diffraction microscopy. The two types of material showed the same crystallographic structure, but the grain size of the electroplated Bi was about 40 times larger than that of the evaporated Bi. This distinction in grain size is likely to be the cause of their different spectral responses.

Keywords

X-ray microcalorimeters Bismuth Electroplating X-ray diffraction 

Notes

Acknowledgements

This work was supported by the Accelerator and Detector R&D program in Basic Energy Sciences Scientific User Facilities (SUF) Division at the Department of Energy. This research used resources of the Advanced Photon Source and Center for Nanoscale Materials, U.S. Department of Energy Office of Science User Facilities operated for the DOE Office of Science by the Argonne National Laboratory under Contract No. DE-AC02- 06CH11357. The contribution of NIST is not subject to copyright.

References

  1. 1.
    S.R. Bandler, R.P. Brekosky, A.D. Brown, J.A. Chervenak, E. Figueroa-Feliciano, F.M. Finkbeiner, N. Iyomoto, R.L. Kelley, C.A. Kilbourne, F.S. Porter, J. Sadleir, S.J. Smith, J. Low Temp. Phys. 151(1–2), 400–405 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    A.D. Brown, S.R. Bandler, R. Brekosky, J.A. Chervenak, E. Figueroa-Feliciano, F. Finkbeiner, N. Iyomoto, R.L. Kelley, C.A. Kilbourne, F.S. Porter, S. Smith, T. Saab, J. Sadleir, J. Low Temp. Phys. 151(1–2), 413–417 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    H. Tatsuno, W.B. Doriese, D.A. Bennett, C. Curceanu, J.W. Fowler, J. Gard, F.P. Gustafsson, T. Hashimoto, R.S. Hayano, J.P. Hays-Wehle, G.C. Hilton, M. Iliescu, S. Ishimoto, K. Itahashi, M. Iwasaki, K. Kuwabara, Y. Ma, J. Marton, H. Noda, G.C. O’Neil, S. Okada, H. Outa, C.D. Reintsema, M. Sato, D.R. Schmidt, H. Shi, K. Suzuki, T. Suzuki, J. Uhlig, J.N. Ullom, E. Widmann, S. Yamada, J. Zmeskal, D.S. Swetz, J. Low Temp. Phys. 184(3), 930–937 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    W.B. Doriese, P. Abbamonte, B.K. Alpert, D.A. Bennett, E.V. Denison, Y. Fang, D.A. Fischer, C.P. Fitzgerald, J.W. Fowler, J.D. Gard, J.P. Hays-Wehle, G.C. Hilton, C. Jaye, J.L. McChesney, L. Miaja-Avila, K.M. Morgan, Y.I. Joe, G.C. O’Neil, C.D. Reintsema, F. Rodolakis, D.R. Schmidt, H. Tatsuno, J. Uhlig, L.R. Vale, J.N. Ullom, D.S. Swetz, Rev. Sci. Instrum. 88(5), 053108–24 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    D. Yan, R. Divan, L.M. Gades, P. Kenesei, T.J. Madden, A. Miceli, J.-S. Park, U.M. Patel, O. Quaranta, H. Sharma, D.A. Bennett, W.B. Doriese, J.W. Fowler, J.D. Gard, J.P. Hays-Wehle, K.M. Morgan, D.R. Schmidt, D.S. Swetz, J.N. Ullom, Appl. Phys. Lett. 111(19), 192602–5 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    L.M. Gades, T.W. Cecil, R. Divan, D.R. Schmidt, J.N. Ullom, T.J. Madden, D. Yan, A. Miceli, IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017)CrossRefGoogle Scholar
  7. 7.
    Y. Sun, S.-C. Gleber, C. Jacobsen, J. Kirz, S. Vogt, Ultramicroscopy 152(C), 44–56 (2015)CrossRefGoogle Scholar
  8. 8.
    T. Tabata, P. Andreo, K. Shinoda, Nucl. Instrum. Methods Phys. Res. B 119, 463 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    S.M. Seltzer, M.J. Berger, Int. J. Appl. Radiat. Isotopes 35, 665 (1984)CrossRefGoogle Scholar
  10. 10.
    A. Said, S. Shastri, J. Synchrotron Radiat. 17, 425–427 (2010)CrossRefGoogle Scholar
  11. 11.
    J.H. Lee, C.C. Aydiner, J. Almer, J. Bernier, K.W. Chapman, P.J. Chupas, D. Haeffner, K. Kump, P.L. Lee, U. Lienert, A. Miceli, G. Vera, J. Synchrotron Radiat. 15, 477–488 (2008)CrossRefGoogle Scholar
  12. 12.
    Y. Shu, W. Hu, Z. Liu, G. Shen, B. Xu, Z. Zhao, J. He, Y. Wang, Y. Tian, D. Yu, Sci. Rep. 6(1), 1–8 (2016)CrossRefGoogle Scholar
  13. 13.
    Midas, microstructural imaging using diffraction analysis software. Accessed 20 Oct 2017. https://www1.aps.anl.gov/science/scientific-software/midas
  14. 14.
    C.A. Hoffman, J.R. Meyer, F.J. Bartoli, A. Di Venere, X.J. Yi, C.L. Hou, H.C. Wang, J.B. Ketterson, G.K. Wong, Phys. Rev. B 48, 11431–11434 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    G. Dresselhaus, M.S. Dresselhaus, Z.Zhang, X. Sun, J. Ying, and G. Chen, in Seventeenth International Conference on Thermoelectrics. Proceedings ICT98 (Cat. No.98TH8365 IEEE, 1998), pp. 43–46Google Scholar
  16. 16.
    Y.-M. Lin, X. Sun, M.S. Dresselhaus, Phys. Rev. B 62(7), 4610–4623 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Y.-M. Lin, S.B. Cronin, J.Y. Ying, M.S. Dresselhaus, J.P. Heremans, Appl. Phys. Lett. 76(26), 3944–3946 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Daikang Yan
    • 1
    • 2
  • Ralu Divan
    • 1
  • Lisa M. Gades
    • 1
  • Peter Kenesei
    • 1
  • Timothy J. Madden
    • 1
  • Antonino Miceli
    • 1
  • Jun-Sang Park
    • 1
  • Umeshkumar M. Patel
    • 1
  • Orlando Quaranta
    • 1
    • 2
  • Hemant Sharma
    • 1
  • Douglas A. Bennett
    • 3
  • William B. Doriese
    • 3
  • Joseph W. Fowler
    • 3
  • Johnathon D. Gard
    • 3
    • 4
  • James P. Hays-Wehle
    • 3
  • Kelsey M. Morgan
    • 3
    • 4
  • Daniel R. Schmidt
    • 3
  • Daniel S. Swetz
    • 3
  • Joel N. Ullom
    • 3
    • 4
  1. 1.Argonne National LaboratoryArgonneUSA
  2. 2.Northwestern UniveristyEvanstonUSA
  3. 3.National Institute of Standards and TechnologyBoulderUSA
  4. 4.University of ColoradoBoulderUSA

Personalised recommendations