Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 462–475 | Cite as

Microwave SQUID Multiplexing of Metallic Magnetic Calorimeters: Status of Multiplexer Performance and Room-Temperature Readout Electronics Development

  • M. Wegner
  • N. Karcher
  • O. Krömer
  • D. Richter
  • F. Ahrens
  • O. Sander
  • S. KempfEmail author
  • M. Weber
  • C. Enss


To our present best knowledge, microwave SQUID multiplexing (\(\mu \)MUXing) is the most suitable technique for reading out large-scale low-temperature microcalorimeter arrays that consist of hundreds or thousands of individual pixels which require a large readout bandwidth per pixel. For this reason, the present readout strategy for metallic magnetic calorimeter (MMC) arrays combining an intrinsic fast signal rise time, an excellent energy resolution, a large energy dynamic range, a quantum efficiency close to \(100\%\) as well as a highly linear detector response is based on \(\mu \)MUXing. Within this paper, we summarize the state of the art in MMC \(\mu \)MUXing and discuss the most recent results. This particularly includes the discussion of the performance of a 64-pixel detector array with integrated, on-chip microwave SQUID multiplexer, the progress in flux ramp modulation of MMCs as well as the status of the development of a software-defined radio-based room-temperature electronics which is specifically optimized for MMC readout.


Metallic magnetic calorimeters MMC Microwave SQUID multiplexer Flux ramp modulation Software-defined radio 



We would like to thank T. Wolf as well as the KIP cleanroom team for technical support during device fabrication. The work was performed in the framework of the DFG research unit FOR2202 (funding under En299/7-1), the European Microkelvin Platform EMP, the Karlsruhe School of Elementary Particle and Astroparticle Physics: Science and Technology (KSETA) as well as Heidelberg Karlsruhe Research Partnership HEiKA.


  1. 1.
    A. Fleischmann et al., Metallic Magnetic Calorimeters, in Cryogenic Particle Detection, Topics in Applied Physics (Springer, Berlin, 2005)Google Scholar
  2. 2.
    S.R. Bandler et al., J. Low Temp. Phys. 167, 254–268 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    D. Hengstler et al., Phys. Scr. T166, 014054 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    C. Bates et al., J. Low Temp. Phys. 184, 351–354 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    M. Loidl et al., J. Low Temp. Phys. 151, 1055–1060 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    L. Gastaldo et al., Eur. Phys. J. Special Topics 226, 1623–1694 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    J. Clarke et al., The SQUID Handbook (Wiley-VCH, Weinheim, 2004)CrossRefGoogle Scholar
  8. 8.
    K. Irwin et al., Appl. Phys. Lett. 85, 2107–2109 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    J.A.B. Mates et al., Appl. Phys. Lett. 92, 023514 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    J. Baselmans, J. Low Temp. Phys. 167, 292–304 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    S. McHugh et al., Rev. Sci. Instrum. 83, 044702 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    J.A.B. Mates et al., Appl. Phys. Lett. 111, 062601 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    J.A.B. Mates et al., J. Low Temp. Phys. 167, 707–712 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    S. Kempf et al., AIP Adv. 7, 015007 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    S. Kempf et al., Supercond. Sci. Technol. 30, 065002 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    E. Hogenauer, IEEE Trans. ASSP 29, 155–162 (1981)CrossRefGoogle Scholar
  17. 17.
    T.J. Genrich et al., US Patent 5,596,609 (1997)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kirchhoff-Institute for PhysicsHeidelberg UniversityHeidelbergGermany
  2. 2.Institute for Data Processing and ElectronicsKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.HEiKA - Heidelberg Karlsruhe Research PartnershipHeidelberg University, Karlsruhe Institute of Technology (KIT)Heidelberg, KarlsruheGermany

Personalised recommendations