Advertisement

Journal of Low Temperature Physics

, Volume 196, Issue 1–2, pp 234–241 | Cite as

Even- and Odd-Frequency Superconductivity in Q1D Organic Superconductors Under Magnetic Field

  • Kiyu FukuiEmail author
  • Yusuke Kato
Article
  • 74 Downloads

Abstract

One of the quasi-one-dimensional organic superconductors \((\hbox {TMTSF})_2X\), called Bechgaard salts, has attracted a lot of interest since its discovery in 1980. These compounds have high critical magnetic field \(H_{\mathrm {c}2}\) in the direction parallel to the layers, and their pairing symmetries seem to be different between low-field phase and high-field phase. In addition, recently, the possibility of the realization of odd-frequency superconductivity was pointed out. Therefore, we study pairing symmetries of Bechgaard salts under magnetic field with frequency-dependent pairing interaction due to spin and charge fluctuation. The model is given by the extended Hubbard model on a quasi-one-dimensional square lattice, and the spin susceptibility and charge susceptibility for the effective pairing interactions are derived by random-phase approximation under magnetic field. The odd-frequency s-wave and even-frequency f-wave regions expand as the magnetic field is increased.

Keywords

Superconductivity Organic superconductor Pairing mechanism Pairing symmetry Odd-frequency superconductivity 

Notes

Acknowledgements

Kiyu Fukui was also supported by the JSPS through the Program for Leading Graduate Schools (MERIT).

References

  1. 1.
    C. Bourbonnais, D. Jérome, in Advances in synthetic metals, twenty years of progress in science and technology, ed. by P. Bernier, S. Lefrant, G. Bidan (Elsevier, Lausanne, 1999), pp. 206–261. (chap. 3)Google Scholar
  2. 2.
    D. Jérome, A. Mazaud, M. Ribault, K. Bechgaard, J. Phys. Lett. 41(4), 95 (1980)CrossRefGoogle Scholar
  3. 3.
    I.J. Lee, S.E. Brown, W.G. Clark, M.J. Strouse, M.J. Naughton, W. Kang, P.M. Chaikin, Phys. Rev. Lett. 88(1), 017004 (2001)CrossRefGoogle Scholar
  4. 4.
    J. Shinagawa, Y. Kurosaki, F. Zhang, C. Parker, S.E. Brown, D. Jérome, J.B. Christensen, K. Bechgaard, Phys. Rev. Lett. 98(14), 147002 (2007)CrossRefGoogle Scholar
  5. 5.
    F.L. Pratt, T. Lancaster, S.J. Blundell, C. Baines, Phys. Rev. Lett. 110(10), 107005 (2013)CrossRefGoogle Scholar
  6. 6.
    V.L. Berezinskii, JETP Lett. 20(9), 287 (1974)Google Scholar
  7. 7.
    K. Shigeta, S. Onari, Y. Tanaka, J. Phys. Soc. Jpn. 82(10), 104702 (2013)CrossRefGoogle Scholar
  8. 8.
    H. Aizawa, K. Kuroki, T. Yokoyama, Y. Tanaka, Phys. Rev. Lett. 102(1), 016403 (2009)CrossRefGoogle Scholar
  9. 9.
    M. Matsumoto, M. Koga, H. Kusunose, J. Phys. Soc. Jpn. 81(3), 033702 (2012)CrossRefGoogle Scholar
  10. 10.
    K. Fukui, Y. Kato, J. Phys. Soc. Jpn. 87(1), 014706 (2018)CrossRefGoogle Scholar
  11. 11.
    H. Aizawa, K. Kuroki, Phys. Rev. B 97(10), 104507 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsThe University of TokyoBunkyo, TokyoJapan
  2. 2.Department of Basic ScienceThe University of TokyoMeguro, TokyoJapan

Personalised recommendations