Advertisement

Transport Measurements of Surface Electrons in 200-nm-Deep Helium-Filled Microchannels Above Amorphous Metallic Electrodes

  • A. T. Asfaw
  • E. I. Kleinbaum
  • M. D. Henry
  • E. A. Shaner
  • S. A. Lyon
Article
  • 22 Downloads

Abstract

We report transport measurements of electrons on helium in a microchannel device where the channels are 200 nm deep and \(3\,\mu \hbox {m}\) wide. The channels are fabricated above amorphous metallic \(\hbox {Ta}_{40}\hbox {W}_{40}\hbox {Si}_{20}\), which has surface roughness below 1 nm and minimal variations in work function across the surface due to the absence of polycrystalline grains. We are able to set the electron density in the channels using a ground plane. We estimate a mobility of \({300}\,\hbox {cm}^2/\hbox {V}\,\hbox {s}\) and electron densities as high as \(2.56\times 10^{9}\,\hbox {cm}^{-2}\). We demonstrate control of the transport using a barrier which enables pinch-off at a central microchannel connecting two reservoirs. The conductance through the central microchannel is measured to be 10 nS for an electron density of \(1.58\times 10^{9}\,\text {cm}^{-2}\). Our work extends transport measurements of surface electrons to thin helium films in microchannel devices above metallic substrates.

Notes

Acknowledgements

Devices were fabricated in the Princeton Institute for the Science and Technology of Materials Micro/Nano Fabrication Laboratory and the Princeton University Quantum Device Nanofabrication Laboratory. Work at Princeton was supported by the NSF, in part through Grant No. DMR-1506862, and in part through the Princeton MRSEC (Grant No. DMR-1420541). Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

References

  1. 1.
    E.Y. Andrei, Two-Dimensional Electron Systems on Helium and other Cryogenic Substrates (Springer, Netherlands, 1997)CrossRefGoogle Scholar
  2. 2.
    Y. Monarkha, K. Kono, Two-Dimensional Coulomb Liquids and Solids (Springer, Berlin, 2004)CrossRefGoogle Scholar
  3. 3.
    F.M. Peeters, P.M. Platzman, Phys. Rev. Lett. 50, 2021 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    H.W. Jiang, M.A. Stan, A.J. Dahm, Surf. Sci. 196, 1 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    H. Etz, W. Gombert, W. Idstein, P. Leiderer, Phys. Rev. Lett. 53, 2567 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    X.L. Hu, A.J. Dahm, Phys. Rev. B 42, 2010 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    C.C. Grimes, G. Adams, Surf. Sci. 98, 1 (1980)ADSCrossRefGoogle Scholar
  8. 8.
    G. Mistura, T. Gnzler, S. Neser, P. Leiderer, Phys. Rev. B 56, 8360 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    J. Angrik, A. Faustein, J. Klier, P. Leiderer, J. Low Temp. Phys. 137, 335 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    J. Klier, I. Doicescu, P. Leiderer, V. Shikin, J. Low Temp. Phys. 150, 212 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    J.M. McGlone, Development of amorphous metal thin films for thermal inkjet printing and microelectronics, Ph.D. thesis, Oregon State University (2017)Google Scholar
  12. 12.
    J.M. McGlone, K.R. Olsen, W.F. Stickle, J.E. Abbott, R.A. Pugliese, G.S. Long, D.A. Keszler, J.F. Wager, J. Alloys Compd. 650, 102 (2015)CrossRefGoogle Scholar
  13. 13.
    J.M. McGlone, K.R. Olsen, W.F. Stickle, J.E. Abbott, R.A. Pugliese, G.S. Long, D.A. Keszler, J.F. Wager, MRS Commun. 7, 715 (2017)CrossRefGoogle Scholar
  14. 14.
    G. Yang, A. Fragner, G. Koolstra, L. Ocola, D. Czaplewski, R. Schoelkopf, D. Schuster, Phys. Rev. X 6, 011031 (2016)Google Scholar
  15. 15.
    D.G. Rees, I. Kuroda, C.A. Marrache-Kikuchi, M. Hfer, P. Leiderer, K. Kono, J. Low Temp. Phys. 166, 107 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    A.J. Dahm, Low Temp. Phys. 29, 489 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    M.I. Dykman, P.M. Platzman, P. Seddighrad, Phys. Rev. B 67, 155402 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    S.A. Lyon, Phys. Rev. A 74, 052338 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    D.I. Schuster, A. Fragner, M.I. Dykman, S.A. Lyon, R.J. Schoelkopf, Phys. Rev. Lett. 105, 040503 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations