Advertisement

Journal of Low Temperature Physics

, Volume 196, Issue 1–2, pp 42–51 | Cite as

Prediction for Two Spatially Modulated Superfluids: \(^4\hbox {He}\) on Fluorographene and on Hexagonal BN

  • Pier Luigi Silvestrelli
  • Marco Nava
  • Francesco Ancilotto
  • Luciano ReattoEmail author
Article
  • 44 Downloads

Abstract

We have derived the adsorption potential of \(^4\hbox {He}\) atoms on fluorographene (GF), on graphane and on hexagonal boron nitride (hBN) by a recently developed ab initio method that incorporates the van der Waals interaction. The stability of the commensurate \(\sqrt{3}\times \sqrt{3}R30^\circ \) phase of \(^4\hbox {He}\) on GF and on hBN is studied by state-of-the-art quantum simulations at \(T=0\) K. With our adsorption potentials, we find that in both cases this commensurate state of \(^4\hbox {He}\) is unstable toward a fluid state in which the \(^4\hbox {He}\) atoms are delocalized, and not localized like in the case of \(^4\hbox {He}\) on graphite or on graphene. In the case of GF, the present result is in qualitative agreement with the superfluid phase that was obtained using an empirical adsorption potential (Nava et al. in Phys Rev B 86:174509, 2012). This fluid state of \(^4\hbox {He}\) on GF and on hBN is characterized by a very large density modulation. For instance, the local density changes by a factor of order 2 along the path connecting two adsorption sites. Recent experiments (Nyeki et al. in Nat Phys 13:455, 2017) have discovered a superfluid phase in the second layer \(^4\hbox {He}\). This is a spatially modulated superfluid that turns out to have anomalous thermal properties. This gives a strong motivation for an experimental study of monolayer \(^4\hbox {He}\) on GF and on hBN that we predict to be a superfluid with a much stronger spatial modulation.

Keywords

Helium DFT Superfluid Fluorographene, hBN 

Notes

Acknowledgements

We thank John Saunders for bringing Ref. [34] to our attention.

References

  1. 1.
    R.R. Nain et al., Small 6, 2877 (2010)CrossRefGoogle Scholar
  2. 2.
    R. Zobril et al., Small 6, 2885 (2010)CrossRefGoogle Scholar
  3. 3.
    J.O. Sofo, A.S. Chaudhari, G.D. Barber, Phys. Rev. B 75, 153401 (2007)CrossRefGoogle Scholar
  4. 4.
    D.C. Elias et al., Science 323, 610 (2009)CrossRefGoogle Scholar
  5. 5.
    M. Nava, D.E. Galli, M.W. Cole, L. Reatto, Phys. Rev. B 86, 174509 (2012)CrossRefGoogle Scholar
  6. 6.
    L. Reatto et al., J. Phys. Conf. Ser. 400, 012010 (2012)CrossRefGoogle Scholar
  7. 7.
    J.G. Dash, M. Schick, O.E. Vilches, Surf. Sci. 299–300, 405 (1994)CrossRefGoogle Scholar
  8. 8.
    M. Buzzacchi, D.E. Galli, L. Reatto, J. Low Temp. Phys. 126, 205 (2002)CrossRefGoogle Scholar
  9. 9.
    Y. Kwon, D.M. Ceperley, Phys. Rev. B 85, 224501 (2012)CrossRefGoogle Scholar
  10. 10.
    M.C. Gordillo, Phys. Rev. B 88, 10 (2013)CrossRefGoogle Scholar
  11. 11.
    F.F. Abraham, J.Q. Broughton, Phys. Rev. Lett. 59, 64 (1987)CrossRefGoogle Scholar
  12. 12.
    M. Pierce, E. Manousakis, Phys. Rev. B 59, 3802 (1999)CrossRefGoogle Scholar
  13. 13.
    D. Sato et al., Phys. Rev. Lett. 109, 235306 (2012)CrossRefGoogle Scholar
  14. 14.
    M. Nava, D.E. Galli, M.W. Cole, L. Reatto, J. Low Temp. Phys. 171, 699 (2013)CrossRefGoogle Scholar
  15. 15.
    L. Reatto, D.E. Galli, M. Nava, M.W. Cole, J. Phys. Condens. Matter 25, 443001 (2013)CrossRefGoogle Scholar
  16. 16.
    M.J. Stott, E. Zaremba, Phys. Rev. B 22, 1564 (1980)CrossRefGoogle Scholar
  17. 17.
    G. Vidali, M.W. Cole, C. Schwartz, Surf. Sci. 87, L273 (1979)CrossRefGoogle Scholar
  18. 18.
    K.T. Tang, J.P. Toennies, J. Chem. Phys. 80, 3726 (1984)CrossRefGoogle Scholar
  19. 19.
    K. Berland et al., Rep. Prog. Phys. 78, 066501 (2015)CrossRefGoogle Scholar
  20. 20.
    J. Klimeš, A. Michaelides, J. Chem. Phys. 137, 120901 (2012)CrossRefGoogle Scholar
  21. 21.
    P. Giannozzi et al., J. Phys. Condens. Matter 21, 395502 (2009)CrossRefGoogle Scholar
  22. 22.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  23. 23.
    S. Grimme, J. Comput. Chem. 25, 1463 (2004)CrossRefGoogle Scholar
  24. 24.
    S. Grimme, J. Comput. Chem. 27, 1787 (2006)CrossRefGoogle Scholar
  25. 25.
    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)CrossRefGoogle Scholar
  26. 26.
    R. Sabatini, T. Gorni, S. de Gironcoli, Phys. Rev. B 87, 041108(R) (2013)CrossRefGoogle Scholar
  27. 27.
    O.A. Vydrov, T. Van Voorhis, J. Chem. Phys. 133, 244103 (2010)CrossRefGoogle Scholar
  28. 28.
    P.L. Silvestrelli, A. Ambrosetti, Phys. Rev. B 91, 195405 (2015)CrossRefGoogle Scholar
  29. 29.
    P.L. Silvestrelli, A. Ambrosetti, J. Low. Temp. Phys. 185, 183 (2016)CrossRefGoogle Scholar
  30. 30.
    F. Ancilotto et al., Int. Rev. Phys. Chem. 36, 621 (2017)CrossRefGoogle Scholar
  31. 31.
    A. Sarsa, K.E. Schmidt, W.R. Magro, J. Chem. Phys. 113, 1366 (2000)CrossRefGoogle Scholar
  32. 32.
    M. Rossi, M. Nava, L. Reatto, D.E. Galli, J. Chem. Phys. 131, 154108 (2009)CrossRefGoogle Scholar
  33. 33.
    J. Nyeki et al., Nat. Phys. 13, 455 (2017)CrossRefGoogle Scholar
  34. 34.
    T.P. Crane, B.P. Cowan, Phys. Rev. B 62, 11359 (2000)CrossRefGoogle Scholar
  35. 35.
    Y. Tang, N.S. Sullivan, J. Phys. Conf. Ser. 568, 012018 (2014)CrossRefGoogle Scholar
  36. 36.
    T. P. Crane, in An NMR Study of Helium-3 Adsorbed on Hexagonal Boron Nitride, Ph.D. thesis, Royal Holloway University of London (1998)Google Scholar
  37. 37.
    R.A. Wolfson et al., Langmuir 12, 2868 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Fisica e Astronomia “Galileo Galilei” and CNISMUniversità di PadovaPaduaItaly
  2. 2.CNR-IOM DemocritosTriesteItaly
  3. 3.Department of ChemistryUniversity of IllinoisUrbanaUSA
  4. 4.Dipartimento di FisicaUniversità degli Studi di MilanoMilanItaly

Personalised recommendations