Advertisement

Journal of Low Temperature Physics

, Volume 196, Issue 1–2, pp 314–320 | Cite as

On the Internal Structure of Smaller Domains in Domain Coarsening Dynamics of Spontaneous \(Z_2\)-Symmetry Breaking in Two Dimensions

  • Hiromitsu TakeuchiEmail author
Article
  • 43 Downloads

Abstract

The internal structure of domains smaller than the characteristic size in domain coarsening dynamics of \(Z_2\) symmetry breaking is evaluated theoretically for different phase-ordering systems in two dimensions. In the previous works on (non-) conserved Ising systems and binary superfluids, the statistical properties of smaller domains are analyzed by assuming that the contribution from its internal structure is negligible. It is shown that this assumption is justified analytically with respect to the statistical quantities, such as domain area, domain wall length and superfluid circulation, according to the empirical dynamic scaling law for the smaller domains.

Keywords

Spontaneous symmetry breaking Phase-ordering kinetics Multi-component superfluids 

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grant Nos. JP17K05549 and JP17H02938. The present research was also supported in part by the Osaka City University (OCU) Strategic Research Grant 2018 for young researchers.

References

  1. 1.
    A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, Cambridge, 1995)zbMATHGoogle Scholar
  2. 2.
    Topological Defects and the Non-equilibrium Dynamics of Symmetry Breaking Phase Transitions, vol. 549 , ed. by Y.M. Bunkov, H. Godfrin NATO Advance Science Institute, Series C: Mathematical and Physical Sciences (Kluwer, Dordrecht, 2000)Google Scholar
  3. 3.
    A. Onuki, Phase Transition Dynamics (Cambridge University Press, Cambridge, 2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    T. Vachaspati, Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons (Cambridge University Press, Cambridge, 2006)CrossRefzbMATHGoogle Scholar
  5. 5.
    T.W.B. Kibble, J. Phys. A 9, 1387 (1976)CrossRefGoogle Scholar
  6. 6.
    W.H. Zurek, Nature (London) 317, 505 (1985)CrossRefGoogle Scholar
  7. 7.
    W.H. Zurek, Phys. Rep. 276, 177 (1996)CrossRefGoogle Scholar
  8. 8.
    A.J. Bray, Adv. Phys. 43, 357 (1994)CrossRefGoogle Scholar
  9. 9.
    Hiromitsu Takeuchi, Phys. Rev. A 97, 013617 (2018)CrossRefGoogle Scholar
  10. 10.
    D. Stauffer, A. Aharony, An Introduction to Percolation, 2nd edn. (Taylor and Francis, London, 1994)zbMATHGoogle Scholar
  11. 11.
    J.J. Arenzon, A.J. Bray, L.F. Cugliandolo, A. Sicilia, Phys. Rev. Lett. 98, 145701 (2007)CrossRefGoogle Scholar
  12. 12.
    A. Sicilia, J.J. Arenzon, A.J. Bray, L.F. Cugliandolo, Phys. Rev. E 76, 061116 (2007)CrossRefGoogle Scholar
  13. 13.
    A. Sicilia, J.J. Arenzon, I. Dierking, A.J. Bray, L.F. Cugliandolo, J. Martínez-Perdiguero, I. Alonso, I.C. Pintre, Phys. Rev. Lett. 101, 197801 (2008)CrossRefGoogle Scholar
  14. 14.
    A. Sicilia, Y. Sarrazin, J.J. Arenzon, A.J. Bray, L.F. Cugliandolo, Phys. Rev. E 80, 031121 (2009)CrossRefGoogle Scholar
  15. 15.
    H. Takeuchi, J. Low Temp. Phys. 183, 169 (2016)CrossRefGoogle Scholar
  16. 16.
    A. Bourges, P.B. Blakie, Phys. Rev. A 95, 023616 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsOsaka City UniversityOsakaJapan

Personalised recommendations