Journal of Low Temperature Physics

, Volume 196, Issue 1–2, pp 197–203 | Cite as

Visualization of a Coflow Jet in Superfluid Helium

  • M. J. JacksonEmail author
  • D. Schmoranzer
  • J. Luzuriaga


We present preliminary results of the visualization of a submerged coflow jet of liquid helium produced by a fountain pump. The jet propagating inside the bulk superfluid is visualized with particle tracking velocimetry using hydrogen particles. We compare the characteristics of the coflow jet with those measured in classical fluids such as helium gas or water. In contrast to the classical experiments, a temperature-dependent angle of the jet is observed, suggesting that the flow may not be described quasi-classically, despite the strong coupling between normal and superfluid components by mutual friction. We report on the statistics of the velocities inferred from the particle trajectories recorded by a high-speed camera at 1.68 and 1.95 K, for jet velocities ranging from 47 to 4500 mm/s.


Superfluid \({}^{4}\hbox {He}\) Flow Visualization Turbulent Jet 



This research is supported by the Czech Science Foundation project GAČR 17-03572S and by Grant 7AMB15AR026 under the EU-7AMB Czech–Argentine MOBILITY scheme of Czech Republic–Argentine Republic cooperation agreement ARC/14/30, without which this work would not have been possible. M.J.J. acknowledges personal support from Vakuum Praha spol. s r.o. We would also like to thank M. La Mantia, L. Skrbek and P. Švančara for useful comments and fruitful discussions.


  1. 1.
    M.S. Paoletti, R.B. Fiorito, K.R. Sreenivasan, D.P. Lathrop, Visualization of superfluid helium flow. J. Phys. Soc. Jpn. 77, 111007 (2008)CrossRefGoogle Scholar
  2. 2.
    W. Guo, M. La Mantia, D.P. Lathrop, S.W. Van Sciver, Visualization of two-fluid flows of superfluid helium-4. Proc. Natl. Acad. Sci. USA 111(Supplement 1), 4653 (2014)CrossRefGoogle Scholar
  3. 3.
    P. Hrubcová, P. Švančara, M. La Mantia, Vorticity enhancement in thermal counter flow of superfluid helium. Phys. Rev. B 97, 064512 (2018)CrossRefGoogle Scholar
  4. 4.
    M. La Mantia, Particle trajectories in thermal counter flow of superfluid helium in a wide channel of square cross section. Phys. Fluids 28, 024102 (2016)CrossRefGoogle Scholar
  5. 5.
    M. La Mantia, L. Skrbek, Quantum turbulence visualized by particle dynamics. Phys. Rev. B 90, 014519 (2014)CrossRefGoogle Scholar
  6. 6.
    J. Allen, H. Jones, New phenomena connected with heat flow in helium II. Nature 141, 243 (1938)CrossRefGoogle Scholar
  7. 7.
    A. Nakano, M. Murakami, K. Kunisada, The flow structure of a thermal counterflow jet in He II. J. Cryogenics Supercond. Soc. Jpn. 29, 194 (1994)CrossRefGoogle Scholar
  8. 8.
    N. Ichikawa, M. Murakami, High Reynolds Number Flows Using Liquid and Gaseous Helium (Springer, New York, 1991), pp. 209–214CrossRefGoogle Scholar
  9. 9.
    M. Murakami, T. Takakoshi, M. Maeda, A. Nakano, PIV measurement result of superfluid He II thermal counterflow jet. AIP Conf. Proc. 985, 183–190 (2008)CrossRefGoogle Scholar
  10. 10.
    M. Murakami, T. Takakoshi, M. Maeda, R. Tsukahara, N. Yokota, Application of particle image velocimetry for measuring He II thermal counter flow jets. Cryogenics 49, 543 (2009)CrossRefGoogle Scholar
  11. 11.
    E. Zemma, J. Luzuriaga, Anomalous trajectories of H\(_{2}\) solid particles observed near a sphere oscillating in superfluid turbulent \(^{4}\)He. J. Low Temp. Phys. 173, 71 (2013)CrossRefGoogle Scholar
  12. 12.
    E. Zemma, M. Tsubota, J. Luzuriaga, Possible visualization of a superfluid vortex loop attached to an oscillating beam. J. Low Temp. Phys. 179, 310 (2015)CrossRefGoogle Scholar
  13. 13.
    R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27, 1217–1274 (1998)CrossRefGoogle Scholar
  14. 14.
    M. Amigó, T. Herrera, L. Neñer, L.P. Gavensky, F. Turco, J. Luzuriaga, A quantitative experiment on the fountain effect in superfluid helium. Eur. J. Phys. 38, 055103 (2017)CrossRefGoogle Scholar
  15. 15.
    Midlik, Š., Jackson, M.J., Schmoranzer, D.: Superflows Probed by a Vibrating Wire Resonator. In: Šimurda, D., Bodnár, T. (eds), Proceedings of Topical Problems of Fluid Mechanics 2018, pp. 209–216, Prague (2018).
  16. 16.
    I.F. Sbalzarini, P. Koumoutsakos, Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151, 182 (2005)CrossRefGoogle Scholar
  17. 17.
    Duda, D.: Ph.D. thesis, Charles University (2017)Google Scholar
  18. 18.
    M. Murakami, N. Ichikawa, Flow visualization study of thermal counter flow jet in He II. Cryogenics 29(4), 438 (1989)CrossRefGoogle Scholar
  19. 19.
    M. Blažková, T.V. Chagovets, M. Rotter, D. Schmoranzer, L. Skrbek, Cavitation in liquid helium observed in a flow due to a vibrating quartz fork. J. Low Temp. Phys. 150, 194–199 (2008)CrossRefGoogle Scholar
  20. 20.
    M. Blažková, D. Schmoranzer, L. Skrbek, On cavitation in liquid helium in a flow due to a vibrating quartz fork. Low Temp. Phys. 34, 298 (2008)CrossRefGoogle Scholar
  21. 21.
    D. Duda, P. Švančara, M. La Mantia, M. Rotter, D. Schmoranzer, O. Kolosov, L. Skrbek, Cavitation bubbles generated by vibrating quartz tuning fork in liquid \(^{4}\)He close to the \(\lambda \)-transition. J. Low Temp. Phys. 187, 376–382 (2017)CrossRefGoogle Scholar
  22. 22.
    L.D. Landau, E.M. Lifshitz, A Course in Theoretical Physics: Fluid Mechanics, vol. 6 (Pergamon Press Ltd., Oxford, 1987)Google Scholar
  23. 23.
    Labus, T.L., Symons, E.P.: Experimental investigation of an axisymmetric free jet with an initially uniform velocity profile, NASA TN-D-6783 (1972)Google Scholar
  24. 24.
    I. Wygnanski, H. Fiedler, Some measurements in the self-preserving jet. J. Fluid Mech. 38, 577 (1969)CrossRefGoogle Scholar
  25. 25.
    S.S. Aleyasin, M.F. Tachie, M. Koupriyanov, PIV measurements in the near and intermediate field regions of jets issuing from eight different nozzle geometries. Flow Turbul. Combust. 99, 329 (2017)CrossRefGoogle Scholar
  26. 26.
    Y.A. Sergeev, C.F. Barenghi, Particles-vortex interactions and flow visualization in \(^{4}\)He. J. Low Temp. Phys. 157, 429 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.Centro Atómico Bariloche, (8400) S.C. Bariloche, CNEA, Inst. Balseiro, UNCBarilocheArgentina

Personalised recommendations