Advertisement

Journal of Insect Behavior

, Volume 32, Issue 3, pp 252–266 | Cite as

Recruitment Rate of Nestmate in Six Tropical Arboreal Ants (Hymenoptera: Formicidae)

  • Tadu ZéphirinEmail author
  • Bagny Beilhe Leila
  • Aléné Desirée Chantal
  • Djiéto-Lordon Champlain
Article

Abstract

We examined the recruitment rate of nestmates during prey capture in six arboreal ant species: Myrmicaria opaciventris, Platythyrea conradti, Crematogaster sp., Crematogaster clariventris, Tetramorium aculeatum, and Oecophylla longinoda. Termites and grasshoppers were used as prey. Prey were grouped by size: for termites, we presented ants with either workers or soldiers and for grasshoppers, we used small nymphs, mature nymphs and adults. After prey detection by a foraging ant, the total recruits present were counted every 30 s over the course of 15 min, and the mean numbers of workers counted at each time interval was computed and plotted for each prey type. We tested the effect of prey type, prey size and termite caste for each ant species on the number of nestmates recruited using ANOVA (GLM proc). Prey size, prey type and termite caste significantly influenced the mean number of nestmates following initial prey detection. We found that the observed recruitments were well explained by linear models for less arboreal (M. opaciventris) and primitive arboreal species (P. conradti), reflecting stochastic movement by individuals or stochastic collective recruitment. For specialized arboreal ant species, recruitment was well explained by exponential models, reflecting within-group recruitment, either with limited or with unlimited group sizes. Overall, T. aculeatum had the highest level of nestmate recruitment. Surprisingly, O. longinoda, known to be one of the most specialized arboreal ant species, fit a recruitment model more like that of either ground ants with some arboreal foraging habits or primitive arboreal species.

Keywords

Arboreal ant Prey capture Nestmate Recruitment 

Notes

Acknowledgments

We thank “la Direction Générale” of the “Institut de Recherche Agricole pour le Développement” for granting access to the Minkoa Mayos orchard for field experimentation.

References

  1. Amor F, Ortega P, Cerda X et al (2010) Cooperative prey-retrieving in the ant Cataglyphis floricola: an unusual short-distance recruitment. Ins Soc 57:91–94CrossRefGoogle Scholar
  2. Bonabeau E, Theraulaz G, Deneubourg JL (1998) Group and mass recruitment in ant colonies the influece of contact rates. J Theo Biol 195:157–166CrossRefGoogle Scholar
  3. Dejean A (1988) Prey capture by Camponotus maculatus (Formicidae-Formicinae). Biol Behav 13:97–115Google Scholar
  4. Dejean A (1990) Prey capture strategy of the african weaver ant. Westview Press Boulder, ColoradoGoogle Scholar
  5. Dejean A, Moreau CS, Uzac P et al (2007) The predatory behavior of Pheidole megacephala. C R Biol 330:701–709CrossRefGoogle Scholar
  6. Dejean A (2011) Prey capture behavior in an arboreal African ponerine ant. PLoS One 6:1–7Google Scholar
  7. Deneubourg JL, Aron S, Goss S et al (1987) Error, communication and learning in ant societies. E J Opera Res 30:168–172CrossRefGoogle Scholar
  8. Djiéto-Lordon C, Orivel J, Dejean A (2001a) Consuming large prey on the spot: the case of the arboreal foraging ponerine ant Platythyrea modesta (Hymenoptera, Formicidae). Ins Soc 48:324–326CrossRefGoogle Scholar
  9. Djiéto-Lordon C, Orivel J, Dejean A (2001b) Predatory behavior of the African ponerine ant Platythyrea modesta (Hymenoptera: Formicidae). Sociobiology 38:1–13Google Scholar
  10. Djiéto-Lordon C, Richard FJ, Owona C et al (2001c) The predatory behavior of the dominant arboreal ant species Tetramorium aculeatum (Hymenoptera: Formicidae). Sociobiology 38:1–11Google Scholar
  11. Hölldobler B, Wilson ED (1976) Weaver ants: social establishement and maintenance of territory. Science 195:900–902CrossRefGoogle Scholar
  12. Hölldobler B, Wilson ED (1990) The ants. The Belknap of Havard University Press Cambridge, MassachusettsGoogle Scholar
  13. Kenne M, Schatz B, Durand JL et al (2000) Hunting strategy of a generalist ant species proposed as biological control agent against termites. Ent Exp Appl 94:31–40CrossRefGoogle Scholar
  14. Kenne M, Schatz B, Fénéron R et al (2001) Hunting efficacy of workers from incipient colonies in tne myrmicine ant Myrmicaria opaciventris (Formicidae, Myrmicinae). Sociobiology 37:121–134Google Scholar
  15. Lachaud JP, Dejean A (1994) Predatory behaviour of seed-eating ant: Brachyponera senaarensis. Ent Exp Appl 72:145–155CrossRefGoogle Scholar
  16. Lachaud JP, Fresneau D, García-Pérez J (1984) Etudes des stratégies d'approvisionnement chez 3 espèces de fourmis Ponerines (Hymenoptera, Formicidae). Folia Ent Mexicana 61:159–177Google Scholar
  17. Levieux J (1976) La nutrition des fourmis tropicales. IV cycle d'activité et regime alimentaire de Platythyrea conradti Emery (Hymenoptera Formicidae, Ponerinae). Annales de l'Université d'Abidjan 5:353–365Google Scholar
  18. Liefke C, Hölldobler B, Maschwitz U (2001) Recruitment behavior in the ant genus polyrhachis (Hymenoptera, Formicidae). J Ins Behav 14:637–657CrossRefGoogle Scholar
  19. Orivel J (2000) L’adaptation a la vie arboricole de la fourmi Pachycondyla goeldii (Hymnoptera : Ponerinae). Université de Paris XIII, Thèse de DoctoratGoogle Scholar
  20. Passera L, Aron S (2005) Les fourmis: comportement, organisation soiciale et évolution. Les presses scientifiques du CNRC, Ottawa, CanadaGoogle Scholar
  21. Pie MR (2004) Foraging ecology and behaviour of the ponerine ant Ectatomma opaciventre Roger in a Brazilian savannah. J Nat Hist 38:717–729CrossRefGoogle Scholar
  22. Planque R, van den Berg JB, Franks NR (2010) Recruitment strategies and colony size in ants. PLoS One 5(8):1–8CrossRefGoogle Scholar
  23. Richard FJ, Fabre A, Dejean A (2001) Predatory behaviour in dominant arborael ant species: the case of Crematogaster sp. (Hymenoptera: Formicidae). J Ins Behav 14:271–282CrossRefGoogle Scholar
  24. Rousson L (2002) Etude et modélisation du comportement prédateur de cinq espèces de fourmis arboricoles néotropicales du genre Azteca (Fam. Dolichoderinae). Mémoire de D.E.A, Université Paul Sabatier, Toulouse IIIGoogle Scholar
  25. Schatz B, Suzzoni JP, Corbara B et al (2001) Selection and capture of prey in the African ponerine Plectroctena minor (Hymenoptera: Formicidae). Acta Oecol 22:55–60CrossRefGoogle Scholar
  26. Sumpter DJT, Pratt SC (2003) A modelling framework for understanding social insect foraging. Behav Ecol Sociobiology 53:131–144Google Scholar
  27. Tadu Z (2016) Organisation spatiale des communautés de fourmis arboricoles tropicales: rôle structurant et importance du comportement prédateur. Thèse de Doctorat, Université de Yaounde 1, CamerounGoogle Scholar
  28. Tadu, Z., C. Djieto-Lordon, Yede et al. (2014a) Ant mosaics in cocoa agroforestry systems of southern Cameroon: influence of shade on occurrence and spatial distribution of dominants ants. Agroforestry System :1067–1079CrossRefGoogle Scholar
  29. Tadu Z, Djiéto-Lordon C, Yede et al (2014b) Ant diversity in different cocoa agroforest habitats in the Centre region of Cameroon. Afri Entomol 22:388–404CrossRefGoogle Scholar
  30. Viana AM (1996) La reconnaissance coloniale du couvain et du champignon chez la fourmi champignogniste (Acromyrmex subteraneus subteraneus). Université Paris XIII, Thèse DoctoratGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tadu Zéphirin
    • 1
    Email author
  • Bagny Beilhe Leila
    • 2
    • 3
  • Aléné Desirée Chantal
    • 1
  • Djiéto-Lordon Champlain
    • 1
  1. 1.Faculty of sciences, Laboratory of ZoologyUniversity of Yaoundé 1YaoundéCameroon
  2. 2.CIRAD, UPR BioagresseursMontpellierFrance
  3. 3.IRADYaoundéCameroon

Personalised recommendations