Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Efficient Catalytic Reduction of Hazardous Anthropogenic Pollutant, 4-Nitrophenol Using Radiation Synthesized (Polyvinyl Pyrrolidone/Acrylic Acid)-Silver Nanocomposite Hydrogels

  • 25 Accesses

Abstract

In the present investigation, a series of (polyvinyl pyrrolidone/acrylic acid) (PVP/AAc) hydrogels were synthesized using gamma irradiation as super clean source for polymerization and crosslinking. Silver nanoparticles were deposited within (PVP/AAc) hydrogels as supporting matrices by means of in situ reduction of silver nitrate (AgNO3) as Ag+ ions precursor using sodium borohydride (NaBH4) as a reducing agent. UV–Vis spectroscopy and TEM image analysis confirmed the nanoscale size of the Ag° nanoparticles (NPs). (PVP/AAc)-Ag° nanocomposites were systematically characterized using XRD, EDX, and TGA techniques. The presence of Ag NPs increases the thermal stability of the obtained nanocomposite as confirmed by TGA studies. The developed nanocomposites show enhanced catalytic activity toward the reduction of 4-Nitrophenol as a model of hazardous anthropogenic materials in the presence of NaBH4 as a reducing agent. The catalytic performance proceeds with conversion yield exceeding 99% almost within 5 min depending on the amount of the loaded Ag NPs. Additionally, (PVP/AAc)-Ag° nanocomposites show efficient antimicrobial activity against different microbial strains which suggesting their use as potential disinfection during waste water treatment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. 1.

    M. Bilal, T. Rasheed, H.M.N. Iqbal, Y. Yan, Sci. Total Environ. 644, 1–13 (2018)

  2. 2.

    G. Arya, N. Sharma, J. Ahmed, N. Gupta, A. Kumar, R. Chandra, S. Nimesh, J. Photochem. Photobiol. B 174, 90–96 (2017)

  3. 3.

    A. Al Kahtani, T. Almuqati, N. Haqbani, T. Ahamad, M. Nausha, S. Alshehri, J. Clean. Prod. 191, 429–435 (2018)

  4. 4.

    A. Kumar, M. Belwal, R. Maurya, V. Mohan, V. Vishwanathan, Mater. Sci. Energy Technol. 2, 526–531 (2019)

  5. 5.

    N. San, A. Hatipoğlu , G. Koçtürk, Z. Cinar, J. Photochem. Photobiol. A 146(3), 189–197 (2002)

  6. 6.

    W. Shen, Y. Qu, X. Pei, S. Li, S. You, J. Wang, Z. Zhang, J. Zhou, J. Hazard. Mater. 321, 299–306 (2016).

  7. 7.

    Y.S. Seo, E.-Y. Ahn, J. Park, T.Y. Kim, J.E. Hong, K. Kim, Y. Park, Y. Park, Nanoscale Res. Lett. 12, 7 (2017)

  8. 8.

    K. Zhang, J.M. Suh, J.-W. Choi, H.W. Jang, M. Shokouhimehr, R.S. Varma, ACS Omega 4, 483–495 (2019)

  9. 9.

    C. Kästner, A.F. Thünemann, Langmuir 32, 7383–7391 (2016)

  10. 10.

    H. Karki, D. Ojha, M. Joshi, H. Kim, Appl. Surf. Sci. 435, 599–608 (2017)

  11. 11.

    P. Thoniyot, M.J. Tan, A.A. Karim, D.J. Young, X.J. Loh, Adv. Sci. 2, 1400010 (2015)

  12. 12.

    G. Sharma, B. Thakur, M. Naushad, A. Kumar, F. Stadler, S. Alfadul, G. Mola, Environ. Chem. Lett. 16(1), 34–146 (2018)

  13. 13.

    R.F.N. Quadrado, G. Gohlke, R.S. Oliboni, A. Smaniotto, A.R. Fajardo, J. Ind. Eng. Chem. 79, 326–337 (2019)

  14. 14.

    W.K. Jung, H.C. Koo, K.W. Kim, S. Shin, S.H. Kim, Y.H. Park, Appl. Environ. Microbiol. 74, 2171–2178 (2008)

  15. 15.

    Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, J. Biomed. Mater. Res. 52, 662–668 (2000)

  16. 16.

    V.A. Oyanedel-Craver, J.A. Smith, Environ. Sci. Technol. 42, 927–933 (2008)

  17. 17.

    A. Raafat, G. Mahmoud, A. El-Hag Ali, N. Badawy, M. Elshahawy, J. Bioact. Compat. Polym. 33, 088391151771066 (2017)

  18. 18.

    A. El-HagAli, H. Shawky, H. Rehim, E.-S. Hegazy, Eur. Polym. J. 39, 2337–2344 (2003)

  19. 19.

    P. Dallas, V.K. Sharma, R. Zboril, Adv. Colloid Interface Sci. 166, 119–135 (2011)

  20. 20.

    L. Mulfinger, S.D. Solomon, M. Bahadory, A.V. Jeyarajasingam, S.A. Rutkowsky, C. Boritz, J. Chem. Educ. 84, 322 (2007)

  21. 21.

    V. Thomas, M.M. Yallapu, B. Sreedhar, S.K. Bajpai, J. Colloid Interface Sci. 315, 389–395 (2007)

  22. 22.

    M. Guo, Y. Zhang, F. Du, Y. Wu, Q. Zhang, C. Jiang, Mater. Chem. Phys. 225, 42–49 (2019)

  23. 23.

    V. Thomas, M.M. Yallapu, B. Sreedhar, S.K. Bajpai, J. Biomater. Sci. Polym. Ed. 20, 2129–2144 (2009)

  24. 24.

    J.W. Rhim, L.F. Wang, S.I. Hong, Food Hydrocoll. 33, 327–335 (2013)

  25. 25.

    V. Kiruba, A. Dakshinamurthy, P. Subramanian, M.S. Paulraj, J. Exp. Nanosci. 10, 532–544 (2014)

  26. 26.

    S.G. Abd Alla, H.M. Nizam El-Din, A.W.M. El-Naggar, Eur. Polym. J. 43, 2987–2998 (2007)

  27. 27.

    M. Yadollahi, S. Farhoudian, S. Barkhordari, I. Gholamali, H. Farhadnejad, H. Motasadizadeh, Int. J. Biol. Macromol. 82, 273–278 (2016)

  28. 28.

    A.I. Raafat, N.M. El-Sawy, N.A. Badawy, E.A. Mousa, A.M. Mohamed, Int. J. Biol. Macromol. 118, 1892–1902 (2018)

  29. 29.

    A. Alonso, X. Muñoz-Berbel, N. Vigués, R. Rodríguez-Rodríguez, J. Macanás, M. Muñoz, J. Mas, D.N. Muraviev, Adv. Funct. Mater. 23, 2450–2458 (2013)

  30. 30.

    X. Jin, M. Li, J. Wang, C. Marambio-Jones, F. Peng, X. Huang, R. Damoiseaux, E.M. Hoek, Environ. Sci. Technol. 44, 7321–7328 (2010)

  31. 31.

    H. Zhang, V. Oyanedel-Craver, J. Environ. Eng. 138, 58–66 (2011)

  32. 32.

    J.S. Kim, E. Kuk, K.N. Yu, J.-H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.-Y. Hwang, Y.-K. Kim, Y.-S. Lee, D.H. Jeong, M.-H. Cho, Nanomed. Nanotechnol. Biol. Med. 3, 95–101 (2007)

  33. 33.

    A. Vanaamudan, M. Sadhu, P. Pamidimukkala, J. Mol. Liq. 271, 202–208 (2018)

  34. 34.

    A.A. Al-Kahtani, T. Almuqati, N. Alhokbany, T. Ahamad, M. Naushad, S.M. Alshehri, J. Clean. Prod. 191, 429–435 (2018)

  35. 35.

    J. Li, C.-Y. Liu, Y. Liu, J. Mater. Chem. 22, 8426–8430 (2012)

  36. 36.

    N. Sahiner, A. Kaynak, S. Butun, J. Non-Cryst. Solids 358, 758–764 (2012)

Download references

Acknowledgements

The authors express their deep gratitude to Dr. Eman Araby, Associate Professor, Radiation Microbiology Department, National Center for Radiation Research and Technology, for antimicrobial assessment and her good interpretation and discussion.

Author information

Correspondence to Amany I. Raafat.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raafat, A.I., Mahmoud, G.A. & Mostafa, T.B. Efficient Catalytic Reduction of Hazardous Anthropogenic Pollutant, 4-Nitrophenol Using Radiation Synthesized (Polyvinyl Pyrrolidone/Acrylic Acid)-Silver Nanocomposite Hydrogels. J Inorg Organomet Polym (2020). https://doi.org/10.1007/s10904-020-01470-4

Download citation

Keywords

  • Catalytic activity
  • Gamma radiation
  • Nanocomposite
  • 4-Nitrophenol
  • Silver nanoparticles